
PyRy3D (version 4.6) User Manual

1. PyRy3D: Functionality

PyRy3D is a method for building multi-resolution models of large macromolecular complexes

using restraints derived from biochemical data. The components (proteins, nucleic acids and any

other type of physical objects including e.g. solid surfaces) can be represented as rigid bodies

(e.g. based on atomic coordinates of structures determined experimentally or modeled

computationally) or as flexible shapes (e.g. for parts, whose structure is dynamic or unknown).

PyRy3D run can be initiated with input files that include sequences of all complex components

(in MultiFASTA format) and structures of some components (ar .tar archive containing files in

PDB format). Additionally, information about restraints can be provided (in Filtrest3D format),

as well as a complex density map (in CCP4 format) or SAXS curve (as .dat file).

The output from PyRy3D consists of a set of .pdb files with generated models and a file

containing information about PyRy3D parameters used and PyRy3D scores for models saved on

disk. All models generated by PyRy3D are saved in PDB format and the filenames contain

information about a score assigned by the program, number of simulation step and current

temperature (a parameter characteristic for simulated annealing algorithm). For the user’s

request, a trajectory of complex simulation trace (file with extension .trafl) can be produced and

a text file with a history of all movements applied to all complex components. All these files

can be used (or reused) in various post-processing tasks (such as models clustering).

Additional tools that accompany this distribution are explained in the Section 6 titled Additional

Tools.

2. Command line options:

To get help with PyRy3D command line just type:

python pyry3d.py - - help

and a list of all available options will appear with short descriptions.

-s input_file_sequence

The sequences of complex components are written in a single text file in MultiFASTA format,

where each sequence is called as the corresponding chain ID in PDB file (the defline of each

sequence starts with “>” and chain ID).

-c simulation_config_file

The config_file contains a variety of important program’s settings: see section 2.0 for details.

-o output_files_basename

If this is not specified, then the program will create a “pyryresults” directory and copy output

files there.

-r restraints_file

This is the file specifying restraints. (The details on the format of the file for restraints,

Filtrest3D, are discussed below. The format is somewhat strict, and should be followed or an

error will be issued.)

-d archive_with_structures

This is .tar or .tgz archive containing 3D coordinates of complex components. Required format

is PDB and only one chain can be stored in a single PDB file.

-m density_map_file

This is the shape of the complex defined by the electron density map. Negative stain map can

also be provided here. PyRy3D accepts files in .ccp4 and .mrc format.

-y SAXS_curve_file

This is the shape of the complex measured with SAXS and saved as a curve in .dat format.

-f full_atom_representation

This command allows to save output models in full atom representation, even if reduced

representation was used during the simulation.

-v history_of_movements

This option allows to save a history of movements applied to components during the simulation.

The file is also required to reconstruct full atom representation of the model.

-e energy_plot

This option creates PyRy3D score plot.

-t trafl_file

This option allows to save a simulation trajectory.

2.1. Format of sequence input file

-s input_file_sequence

The sequences of complex components are written in a single text file in MultiFASTA format,

where each sequence’s header contains its corresponding chain ID in PDB file (the defline of

each sequence starts with “>” and chain ID). For example:

>A

MMMET

>B

AAUUCCGG

>X_protein

WERTY

>D_DNA

AAATCG

“A” sequence corresponds to protein structure with chain id “A”, B to RNA structure with chain

id “B”, “X_protein” to protein with unknown structure and “D_DNA” refers to DNA sequence

with no 3D data (no PDB provided by the user for X and D sequences).

2.2. Format of structure input files

-d archive_with_structures

This is a single .tar or .tgz archive containing 3D coordinates of all complex components.

Required format is PDB and only one chain can be stored in a single PDB file.

Comment:

 The format of the PDB file has some very strict requirements: i.e., it should be a simple

structure

— Chain IDs for all components must be unique (you cannot provide two structures with “A”

chain ID)

— For each PDB file a sequence must be provided in MultiFASTA file

— Do not use heteroatoms (HETATOM), use ‘ATOM ‘ instead

— Program supports non-standard base notations: the readable residues are A, C, G, U, T, but

also most modified residues and some ligands are supported

— Be sure that there are no duplicated atoms or residues in provided structures, program will

complain about it

— In a single PDB file only one chain should be provided – if more chains are given, only the

first one will be considered by PyRy3D

— If one want to treat e.g. protein and DNA as a single component during simulation, the easiest

way is to prepare two separate PDB files and define COVALENT_BONDS (explained further

in this manual) for these two molecules in the configuration file provided for PyRy3D. In

such a case PyRy3D will treat those two molecules as one e.g. if protein A is rotated, DNA is

rotated the same way at the same time.

2.3. Format of long-range restraint files

-r restraints_file

The input restraint file contains information on the type and weight (importance) of the

restraints between entities (defined as atoms, sets of atoms or even (X,Y,Z) points in 3D

space).

Restraint options

A restraint can be thought of as a flexible tether that drives the selected atoms towards points

located within a certain distance by applying a penalty for distances that deviate from that range.

It can also provide a reward when a desired distance is achieved. The penalty and reward are

positive and negative contributions to the total energy of the simulated system, respectively.

Restraint command formats

The restraints format implemented in PyRy3D was based on Filtrest3D format. The description

of the latter can be found under the following website:

http://filtrest3d.genesilico.pl/readme.html. In PyRy3D some new types of restraints occurred

(e.g. surface accessibility, distance from point in 3D space, relation or symmetry)

General restraint file syntax is:

// Comment

http://filtrest3d.genesilico.pl/readme.html

DEFAULT_WEIGHT <- 1.0

RESTRAINT_TYPE_NAME (

 RESTRAINT_DECLARATION

 RESTRAINT_DECLARATION

 ...

)

There are following restraint types (restraint type name in parentheses):

 distance: (dist);

 surface accessibility: (surface_access);

 solvent accessibility (access);

 distance from point in space: (pointdist);

 symmetry: (symmetry);

 relation between distances (relation);

 logical operators (and, or).

Distance restraints
Distance restraints allow to define the permitted range of distances between the residues (e.g., “5 Å

between any atom of residue X and residue Y” or “5-10 Å between the Cα residue X in chain A and any

residue of the fragment Y-Z in chain B”) or sets of residues (e.g., “10 Å between β-sheet A171-C182 of

chain A, and an α-helix A57-D62 of chain B”).

 If C-alpha atoms of V10 and D34 should be in at least 4.5 Angstroms distance:

dist ((V10)- “A” (D34) “X” (>4.5))

 To restraint SG atom of the residue C140 to be within 4 angstroms from OE1 atom of

residue E33:

dist (C140_near_E33: (C140) “A”-(E33) “E” (SG-#OE1#<=4))

 To define distance between two regions (here any residue in range 163-175 in chain Z

should be within 4.8 Angstroms from any residue 306-310 in chain A)

dist ((E163-F175) "Z" -(306-310) "A" (<=4.8))

Surface accessibility
Surface accessibility allows for defining entities (atoms, residues, components fragments) that are

positioned on the surface of the whole complex such as exposed enzyme active sites.

surface_access ((163-165) "Z" (<=1.0))

Solvent accessibility
The residue burial/exposition to the solvent may be given as a range of the relative accessible solvent

area (ASA) expressed in percentages (e.g., “residue X is exposed in 40-50 %”) to define residues

exposed to solvent in a particular component.

 To define aminoacid 45th in chain “A” as having between 40% to 90% accessibility,

Glycine 56th as having 30% to 60% accessibility, and alanine 20th as having between

80% to 90% accessibility, use the following formula:

access (

 45 “A” 40-90

 Gly56 “A” 30-60

 A20 80-90 “A” weight<-1.5

)

Relation
Relation restraint is specific to PyRy3D (it is not available in Filtrest3D itself) and is used to compare

two distances (e.g., data from FRET like “a distance between residues X-Y of chain A and residues U-Z

of chain B” is larger/smaller/equal to “a distance between the Cα residue X in chain C and any residue of

the fragment Y-Z in chain D”).

 Relation restraint is applied to define relation between two distances e.g. distance

between residue 3 in chain A and residue 5 in chain B should be smaller than distance

between residue 30 in chain A and residue 500 in chain B

relation ((3) "A" -(5) "B" () < (30) "A" -(500) "B" ())

Distance from point
The distance can be defined between a residue or a set of residues and a point in 3D space

(PointDistance):

pointdist ((100-101) "D"- (20.0, 20.0, 20.0) (<=5.5))

Symmetry
Symmetry allows to provide distances that should be of equal length in the complex. This particular

restraint can be applied to introduce symmetry between identical copies of oligomeric assemblies.

symmetry (

 (1) "A" -(1) "B" ()

 (1) "B"-(1) "C" (CA-CA)

 (1) "A"-(1) "C" ()

)

Conjunction and alternative

To declare composite restraint having score of minimum (“or”) or maximum (“and”) of two

other restraints, the following restraint blocks can be used:

and (

 access (

 Gly56 30-60

)

 access (

 Glu45 40-90

)

)

Restraint weights

Default restraint weight is 1.0, but it can be changed:

DEFAULT_WEIGHT <- 2 //all penalties defined in the restraint file will be multiplied by 2

dist (

 (V10) “A”- (34-36) “B” (CA<4.5 weight<-2 // C-alpha penalty will be multiplied by 2.0

)
Comments:

 the residue numbers specified in the restraints file must correspond to ones in input PDB file !!!

 chain id is required in all restraint types to indicate which component the user refers to

3.4. Format of the configuration file

-c simulation_config file

The argument is a file containing simulation configuration parameters. With this option, the

user can configure the simulation in a more advanced way.

The configuration file is a text file with one parameter specified in each line. There can be

blank lines, each line must contain a command or must be empty. Comments starts with “#”.

Also, if no configuration file is provided by the user, PyRy3D is run with default parameters (see

the tables below in this paragraph).

Config file options

These are some of the options that can be included in a typical configuration file.

STEPS N

This specifies the number of unified iterations in a simulated annealing simulation.

WRITE_N_ITER N

This specifies how many iterations should occur before the conformation is saved on disk or
appended to the trajectory file. In general, there probably should be at least 10 000 iterations
of PyRy3D before a write is done to generate a meaningful structural change. However, if
the user desires to have a chain of quite similar structures, this value can be low.

ANNTEMP float1 float2

This specifies the temperature parameter of the simulation (and is applied only to Simulated

Annealing algorithm). Float1 refers to the temperature at the beginning of the simulation, float2

to the temperature at the end.

SIMMETHOD name_of_algorithm

Algorithm to perform sampling of conformational space. Available options: "Genetic" for

genetic algorithm or "SimulatedAnnealing" for simulated annealing (default) or

"ReplicaExchange" for replica exchange.

Comments:

 !!! The final temperature can be lower or higher that initial temperature. In the second case,

the system is being gradually heated. !!!

 !!! The final temperature can be also equal the initial temperature. In such a case, the

program maintains same temperature during entire simulation !!!

 The order of parameters in configuration file is not important

The format of the file up to this point should be as follows

STEPS 1000

WRITE_N_ITER 20
ANNTEMP 1.35 0.90

SIMMETHOD SimulatedAnnealing

There are some additional terms that can be set up the use in the configuration file. These

options include the following:

Scoring function parameters:

This is a group of parameters that control a scoring function and correspond to weights assigned for

particular features of generated model such as number of clashes, violation of restraints or leaving empty

spaces in density map.

parameter name
default

value

available

values
description

OUTBOX 1 0 to 10
Weight of a penalty for atoms/residues outside

simulation area

MAP_FREESPACE 1 0 to 10
Weight of a penalty for free spaces inside density

map

CLASHES 1 1 to 10
Weight of a penalty for collisions (only CA and C4'

atoms are considered)

CLASHES_ALLATOMS 1 1 to 10
Weight of a penalty for collisions (all atoms are

considered)

RESTRAINTS 1 0 to 10
Weight of a penalty for violation of distance

restraints

DENSITY 1 0 to 10
Weight of a penalty for occupation of map points

with low density values

CHI2 1 0 to 10
Weight of a penalty for disagreement with SAXS

curve

RGE 1 0 to 10
Weight of a penalty for disagreement with user

defined radius of gyration (RG_VAL)

SYMMETRY 1 0 to 10
Weight of a penalty for violation of symmetry

restraints

Movements frequencies:

Describe how often particular types of movements are applied to components

parameter name
default

value
available

values
description

ROTATION_FREQ 0.25 0 to 1 frequency of rotations

ROTATION_COV_FREQ 0.25 0 to 1 frequency of rotations around covalent bonds

TRANSLATION_FREQ 0.25 0 to 1 frequency of translations

EXCHANGE_FREQ 0.25 0 to 1 frequency of components exchange

SIMUL_DD_FREQ 0.25 0 to 1
frequency of simulation of disordered

fragments

ROTATION_ALL_FREQ 0.25 0 to 1
frequency of rotations where all components

are moved simultaneously

ROTATION_WHOLE_FRE

Q
0.25 0 to 1

frequency of rotations where all components

are moved simultaneously around common

centre of mass

TRANSLATION_ALL_FR

EQ
0.25 0 to 1

frequency of rotations where all components

are moved simultaneously

Information about complex:

Set of different parameters describing modeling complex such as density threshold of density map,

values measured with SAXS or definitions of mobile and immobile components

parameter name
default

value

available

values
description

KVOL 1 1 to 10

how many complex volumes will describe

density map, e.g. KVOL=2 indicated that map

volume will be twice as big as complex volume

calculated from its sequence

THRESHOLD 0.0

Value set

must occur in

a density map

float value describing density map threshold

SAXSRADIUS 0.0
positive float

value
float value describing dammy atom radius

RG_VAL 0.0
positive float

value

float value describing radius of gyration for a

complex

CRYSOL_PATH 0.0 string path to CRYSOL binaries

MOVE_STATE

no

default

values,

paramet

er is

optional

e.g. D

movable 5 5

5 0.1 0.1 0.1

10 10 10 0.1

0.1 1 5 30 To

fix a

molecule use

"fixed"

parameter

Indicates limited values of moves (rotations,

translations) for particular component

COVALENT_BONDS

no

default

values,

paramet

er is

optional

ChainName

[ChainBound

1,

ChainBound2

]

[AtomBound

Number1,

AtomBound

Name1]

[AtomBound

Number2,

AtomBound

Name2], e.g.

is used to indicate which components are

linked by a covalent bond

A ['Z','D']

[10,'CA']

[11,'CA']

START_ORIENTATION False True/False
True if user sets start conformation, False if

not!!

IDENTIFY_DISORDERS False True/False

True if user wants PyRy3D to add missing or

disordered fragments into the structures, False

if not!!

Simulation parameters:

parameter name
default

value
available

values
description

SIMMETHOD
Simulated

Annealing

"Genetic"

or

"Simulated

Annealing"

for

simulated

annealing

(default) or

"ReplicaEx

change" for

replica

exchange

simulation algorithm

REDUCTMETHOD roulette

roulette,

cutoff,

tournament

is available only for genetic simulation mode

REPLICAEXCHANGE_FR

EQ
2 integers

each X steps replicas will be exchanged; by

default every 10% of simulation steps

REPLICATEMPERATURE

S

400 375

350 325

300 275

250 225

200 175

150 125

100

list of

integer

values of

any size

list of temperatures for all replicas

ANNTEMP 100
from range

1 to 100

annealing temperature in simulated annealing

procedure

STEPS 100

min 1, max

number is

not limited

Corresponds to number of simulation steps to

perform

COMPONENT_REPRESE

NTATION
ca

CA - only

calfas/c4'

(default);

cacb -

coarse

grain, 3p -

3points, fa -

Type of structure representation

full atom

GRIDRADIUS 1.0
no limits

set
Radius of single grid cell.

SIMBOX 2.0
no limits

set

Parameters indicated how many times

simulation box diameters is bigger than the

longest distance inside a density map

MAXROT 5
from 1 to

360

Maximal rotation angle for single component

move

MAXTRANS 5 5 5
no limits

set

Maximal translation vector for single

component move

Specific parameters to control simulation progress:

parameter name
default

value

available

values
description

WRITE_N_ITER 100 - how often PyRy3D save a model on disk

PARAMSCALINGRANGES 0 25 50 -
at what point of simulation should parameter

scaling ranges kick in

PARAMSCALINGR1 50 100 - first scaling range (numbers refer to steps)

PARAMSCALINGR2 25 50 - second scaling range (numbers refer to steps)

PARAMSCALINGR3 0 25 - third scaling range (numbers refer to steps)

Some examples:

#use density map volume equal to 10 complex volumes
KVOL 10

#use density map with density values >= threshold equal to 1.5
THRESHOLD 1.5

#perform 50 000 simulation steps
STEPS 50 000

#assign default value for a particular component
THRESHOLD X

#do not move component “B” during simulation
MOVE_STATE B fixed

#limit movements of component "B"
MOVE_STATE B 5 5 5 1 1 1 20 20 20 100 100 100 0 0

5 5 5 - refers to rotation around X, Y, Z axis in single move (X - up and down; Y- right, left, Z -

back, forward)

1 1 1 - refers to translation in single move

20 20 20 - refers to maximal change in X, Y, Z coordinates during simulation (due to rotations)

100 100 100 - refers to maximal change in X, Y, Z coordinates during simulation (due to

translations)

0 0 - are specific to rotation around covalents bonds

#start simulation from components orientations as provided in PDB files
START_ORIENTATION True

#include disorder/flexibility while modeling
IDENTIFY_DISORDERS True

SIMUL_DD_FREQ 0.5 0.5

4. PyRy3D: Output

As a result of the simulation, PyRy3D returns a set of PDB files comprising the best-scored

conformations generated during the modeling. Files are saved on disc with frequency defined by

the user (parameter WRITE_N_ITER in configuration file) and they are named according to the

following formula:

Outname_score_iteration_temperature.pdb

Where:

Outname – name of output assigned by the user in “–o” option (by default “pyryresult”)

Score – score assigned by PyRy3D, the closer to zero, the more model fulfills the restraints

Iteration – number of iteration in which the particular model was created

Temperature – value of temperature parameter indicating the annealing progress in iteration

when this model was saved

5. Examples

In this chapter we present how to run a command-line tool to perform some specific modeling

tasks. The same operations can be done with server and GUI. We would like to recommend:

 A command-line tool for extensive runs of PyRy3D (multiple runs with large number

of steps)

 GUI – for learning how PyRy3D works, but also to select the most accurate values of

settings parameters

 Server – for running single runs of PyRy3D (they might consist of large numer of

steps). Multiple runs of server might lead to increase a queue.

1. Docking structures with restraints
>>python pyry3d.py –fast –d coordinates.tar –r restraints.txt

Where:

Coordinates.tar contains PDB files of complex components

Restraints.txt contains information about docking restraints

NOTES:

 In this case MultiFASTA file with sequences of components is generated

automatically. Sequences are derived from PDB files found in coordinates.tar

archive

 Bear in mind that structures in coordinates.tar archive must be prepared

before running PyRy3D – each file should contain different chain name and the

atoms/residues defined in restraints.txt file should occur in PDB files (the

same names and numbers in PDB file and restraints file)

 If configuration file is not delivered by the user, PyRy3D is run with default

parameters (see 3.4 section of this Manual to check their values)

 If name of output is not provided, PyRy3D puts all models into “pyryresults” folder

2. Docking into electron density map

>>python pyry3d.py –fast –d coordinates.tar –m

densitymap.ccp4

Where:

Coordinates.tar contains PDB files of complex components

Densitymap.ccp4 is the map with electron density map (or one from negative stain) in

CCP4 format

NOTES:

 In this case FASTA file with sequences of components is generated automatically

from PDB files found in coordinates.tar archive

 Docking of components into the map will start from random locations of

components inside the map

3. Docking into density map with use of restraints

>>python pyry3d.py –fast –d coordinates.tar –m

densitymap.ccp4 –r restraints.txt

NOTES:

 In this case be sure that residues used in restraint file are provided in corresponding

PDB file with structures.

4. Modeling with usage of SAXS data

PyRy3D can work either with ab initio reconstruction or with raw data (SAXS curve). In

first case the input is regular PDB file, in the second .DAT file.

>>python pyry3d.py –fast –d coordinates.tar –x abinitio.pdb

OR

>>python pyry3d.py –fast –d coordinates.tar –y curve.dat

Where:

Abinitio.pdb is the ab initio reconstruction calculated from SAXS data

Curve.dat is SAXS curve

NOTES:

 When ab initio model is used for modeling, PyRy3D performs docking in similar

way as in case of a density map (the algorithm of scoring agreement with complex

shape is similar)

 When SAXS curve is used, PyRy3D runs CRYSOL and scores agreement of

theoretical curve calculated from obtained model with the curve delivered by the

user

 For -y option CRYSOL must be available on disk and CRYSOL_PATH should be

given in configuration file (to folder with crysol.bin)

5. Reproduce full-atom model from a reduced representation

>>python pyry3d.py –fast –d coordinates.tar –f fullatom.pdb –

v history.txt

To reduce computational time of simulation the user can use reduced representation of

complex structure. In order to reproduce full-atom representation of final model generated

by PyRy3D –f and –v options can be used. PyRy3D will rebuilt the full-atom model from

the history of movements used during simulation.

Where:

history.txt is a name of file where history of modeling movements is saved in format

recognizable by PyRy3D

Fullatom.pdb is a name for PDB file where the fullatom model will be saved

NOTES:

 Fullatom representation is reproduced only for the best-scored model generated

during a single run of PyRy3D

 Fullatom.pdb and history.txt files are also used in PyRy3D GUI to record

a movie of simulation

6. Starting modeling procedure from predefined orientations of some components

>>python pyry3d.py –fast –d coordinates.tar –c

config_file.txt

If the user wants to start a simulation from predefined model it is possible to achieve it with

PyRy3D in two ways:

 If all components should have predefined starting positions, set the

START_ORIENTATION parameter in configuration file as True (by default is False

and modeling starts with random positions of components):
START_ORIENTATION True

 If only some components should have predefined starting positions – use

MOVE_STATE parameter and define how much these components can change their

positions during simulation:
MOVE_STATE movable A 5 5 5 10 10 10 360 360 360 1000

1000 1000 5 30

7. Limiting movements of some components

>>python pyry3d.py –fast –d coordinates.tar –c config.txt

Movements of components can be either disabled:

 MOVE_STATE B fixed #(in configuration file MOVE_STATE

parameter is set as fixed for chain B)

Or only limited:

 MOVE_STATE movable A 5 5 5 0.1 0.1 0.1 10 10 10 0.1 0.1

1 5 30 #(chain A can move but not more than defined

ranges)

8. Modeling disordered/flexible fragments of some components

>>python pyry3d.py –fast –d coordinates.tar –s

sequences.fasta –c config_file.txt

In this particular case, the user must provide several files:

coordinates.tar – an archive with PDB coordinates of components

sequences.fasta – MultiFASTA file with full-length sequences of all components

config_file.txt – a text file with chosen values of PyRy3D parameters.

When modeling disorder/flexibility the user must set two parameters:
IDENTIFY_DISORDERS True

Which turns on the procedures to find missing fragments in PDB files (that will be treated as

disordered/flexible during the simulation)
SIMUL_DD_FREQ 0.5 0.1

Which defines how often a conformation of disordered/flexible parts will be changed at the

beginning and at the end of simulation (0.5 and 0.1 respectively)

NOTES:

Be very careful when preparing input data for modeling with flexible/disordered regions.

Follow the guidelines below:

 Sequences in MultiFASTA file must contain full length sequences (with sequence of

disordered fragments included)

 Structures in PDB files must not contain any coordinates for disordered/flexible regions

(remove any lines corresponding to those atoms)

 Numbering of residues in PDB files must be in agreement with the numbering in

MultiFASTA file. Here are some examples:

o if residues 1-5 in chain A are disordered their sequence is provided in FASTA

file, but PDB file containing chain A starts from residue number 6

o if residues 50-55 are disordered their sequence is provided in FASTA file, but

PDB file contains residues 1-49 and then from 56 till the end of the chain

o if a structure of entire component is unknown, then provide the full length

sequence in MultiFASTA file, but call this sequence by chain name followed by

“_” and a molecule type e.g. “A_protein”, “B_RNA”, “C_DNA” to indicate that

this component will be treated as a simulated volume. Also no PDB file is

provided for such a component.

General remarks:

 The number of structures you will obtain from a single run is always: STEPS/WRITE_N_ITER +

1.

 PyRy3D can be run without providing a configuration file by the user. In such a case, the

program is run with default parameters (with values as mentioned in 3.4 Chapter of this

Manual).

 For each run PyRy3D automatically generates pyry.log text file with values of parameters used

and detailed scores assigned for models saved on disk.

6. Additional Tools

Additional tools are also included with the distribution.

6.3 Clustering

Clustering is a tool for processing a set of alternative models by finding and grouping similar

structures together into groups (called clusters) etc.. Benchmarks demonstrated that clustering

provides is very useful in identification of most probable solutions.

The input for clustering tool del ive red wi th P yR y3D is just a folder containing a set of

models saved in PDB files. Typically those PDB files originate from multi-instance runs of
PyRy3D. The output of clustering is a set of PDB files corresponding to subsequent

clusters.

Usage:
>> cluster_complexes.py [<options>] [-o output] [-i input] [-t

threshold] [-n struct_number]…

Example usage:
>> cluster_complexes.py –i alternativemodels –t 10 –n 1000 –o

clustering_result.txt

where:

alternativemodels is a name of folder containing alternative models to be clustered,
10 is the RMSD threshold in the set for clustering
1000 is the number of best scored models to be considered while clustering

clustering_result.txt is a name of text file with clustering results

there are also some additional options:

-s for selecting best N structures criterion from selection of pyry3d (for score assigned to

models by PyRy3D), cc (for cross-correlation coefficiency)

-m for selecting clustering criterion from selection of RMSD, GDT_TS and TMSCORE

-r for choosing representation of models, here clustering can be performed for full-atom

models (-r fa), only Calfa or C4 ′ atoms (-r ca) or for centers of mass (-r sphere)

--sort this option generates new folders for five largest clusters containing PDB files

assigned to those groups

As a result (when –o –sort options were used to run the tool), a user will obtain:

new folders for five largest clusters containing PDB files assigned to those groups

text file containing cluster members:

Clustered conformers number 3

poz2dna43_-238.979_225000_4.46819e-06.pdb score -238.979

poz2dna46_-240.066_295000_1.44237e-08.pdb score -240.066

poz2dna4_-240.49_30000_0.0154917.pdb score -240.49

Clustered conformers number 3

poz2dna24_-244.255_40000_0.00280232.pdb score -244.255

poz2dna39_-245.184_285000_0.000100337.pdb score -245.184

poz2dna26_-248.681_125000_0.000107724.pdb score -248.681

Clustered conformers number 2

poz2dna34_-234.2963_300000_4.13923698943e-05.pdb score -234.2963

poz2dna54_-235.7814_300000_6.45055979476e-06.pdb score -235.7814

Clustered conformers number 2

poz2dna92_-239.959_80000_0.00641644.pdb score -239.959

poz2dna45_-244.967_160000_8.1394e-07.pdb score -244.967

where for each cluster a number of members is given (3, 3, 2 and 2 in the above example) and

names of PDB files belonging to these groups with corresponding scores assigned by PyRy3D.

NOTE: the current implementation of the clustering tool doesn’t provide any cut-off for a

number of clusters. Actually it identifies subsequent clusters until it exhausts the input data. In

such cases, only the first few clusters are meaningful: the remaining clusters are usually

insignificant. The user should inspect the clustering output to identify the percentage of

structures that are contained in the 1st, 2nd, 3rd, and so on, set of clusters.

6.4 Ranking
Using rank_models.py tool attached to PyRy3D distribution, the user can create a ranking of

alternative models according to PyRy3D scoring function. For instance, let’s consider that a

user generated a large set of alternative complex models using docking tool that does not allow

to define distance restraints (or other restraints such as symmetry, solvent accessibility etc.).

With help of rank_models.py tool one can evaluate these structures according to their

agreement with distance restraints from chemical crosslinking, FRET or some other sources.

Also, other types of restraints can be considered for this evaluation. Additionally, a ranking can

be created with different PyRy3D configuration parameters values such as weights for clashes

penalty or for quality of fit into the map (e.g. to check which model from the set of alternatives

fits most accurately to the map).

Usage:
>> rank_models.py [<options>] [-m map] [-d structures] [-s

sequences] [-c config] [-r restraints]

Example usage:
>> rank_models.py -m map.ccp4 -d structures -s sequences.fasta -

c config.txt -r restraints.txt

where:

-m map.ccp4 – electron density map of the complex (optional)

-d structures – name of a folder containing models to be ranked

-s sequences.fasta – name of file with sequences of components

-c config.txt – file with PyRy3D configuration parameters

-r restraints.txt – file with restraints

As a result (when –o –sort options were used), the user receives a text file with model names

sorted according to PyRy3D score.

NOTES:

 all input files required for this tool should follow the same format rules as PyRy3D itself.

 much more options of ranking models are available in PyRy3D GUI launched with

UCSF Chimera Extension (see chapter 6.6 for details). Also GUI provides graphical

interface to run all these options.

6.5 Input Generator
Preparing input files for PyRy3D can be sometimes hard and time consuming. For this reason

we implemented a tool that automatically generates files ready for PyRy3D run called

InputGenerator.py (distributed together with PyRy3D source).

The simplest way to use it is by running regular command-line program without delivering

MultiFASTA sequences for components. In this case InputGenerator.py is called straightaway

and PyRy3D generates this file for the user based on coordinates in PDB files.

However this tool offers a lot more options such as:

 renaming residues and chains of 3D coordinates of components

 defining disordered/flexible regions

 coming back to original names and numbering of components (operation reverse to

generating input for PyRy3D)

 renaming chains and renumbering residues in files with restraints according to changes

applied to structures and sequences

 and many more

NOTES:

 much more options of automatic generation of input files for PyRy3D program are

available in PyRy3D GUI launched with UCSF Chimera Extension (see chapter 6.6 for

details).

6.6 GUI

We have created a tool that associates PyRy3D with UCSF Chimera, a popular program for

interactive visualization and analysis of molecular structures. PyRy3D Chimera Extension is a

plugin, that provides a user-friendly graphical interface, letting the user to generate a set of

PyRy3D input files interactively, or to calculate a score for a set of different components'

arrangements, based on default or user-defined parameters, directly from the extension's

interface. It also offers many features designed to make the understanding and interpretation of

PyRy3D results much easier.

PyRy3D Chimera Extension installation

The graphical user interface that we developed for PyRy3D is an extension to a popular

molecular viewer, called UCSF Chimera. It is not a standalone program, so in order to use it,

you must first install the viewer.

STEP 1: Download and install UCSF Chimera, version 1.9 or higher

STEP 2: Download BioPython 1.63 here and unpack it. Do not install it yet.

UCSF Chimera comes with its own Python copy. In order to use BioPython within Chimera on

Linux, you need to install the library using Chimera's Python copy.

for Windows: Install BioPython 1.63 using the regular installer.

for Linux: Install BioPython 1.63 using Chimera's Python copy (Yes install BioPython, even if

you have BioPython on your system already!):

1. Open the terminal.

2. Change your working directory to the previously unpacked BioPython folder (it must contain

the "setup.py" file)

3. Type the following command ("CHIMERA" here is the location where you have your

Chimera installed):

 CHIMERA/bin/chimera --nogui --silent --script "setup.py install"

4. To check if the library was installed correctly, open Chimera, go to Tools -> General

Controls -> IDLE and type:

>>import Bio

If it doesn't return any exception, it means BioPython is installed correctly.

STEP 3: Place the "PyRy3D_Extension" folder in share directory, located in the main UCSF

Chimera installation directory.

Loading input files

The Extension's first tab, called “Models” allows you to load your input files for further

analysis. Use “Add density map...” and “Add structures...” buttons to list your shape descriptor

and components of the complex. After you're done with preparing the list of your files (which

can be seen in “Maps ready to open” and “Structures ready to open” fields), click the “Load

data” button to load them into Chimera.

Defining simulation / evaluation parameters

Before running an automatic complex evaluation or a classic PyRy3D simulation, a user can

modify the default set of parameters. In order to do so, go to the Extension's second tab

(“Sim/Score”). There, a user can use the “parameters window” to manually modify different

parameters, or load his/her own configuration file using the “Get parameters from configuration

file” option.

Automatic complex scoring

Aside from performing PyRy3D modeling, one can use PyRy3D Chimera Extension to evaluate

particular arrangement of components, that is set interactively in UCSF Chimera. This feature

lets to use knowledge and/or intuition to manually arrange the components in the space and then

check how it would be scored by PyRy3D.

After loading your input files using the “Models” tab, go to the Extension's second tab

(“Sim/Score”), choose your output folder using the “Browse” button next to the “Output

directory” field, and click “Calculate PyRy3D score for displayed complex”.

Performing PyRy3D simulation

The main purpose of PyRy3D software is conducting Monte Carlo simulations in order to find

the best arrangement of components in a macromolecular complex. PyRy3D Chimera Extension

also allows for using this feature directly from the Extension's interface. After the simulation is

finished, a diagram is being displayed, showing the gradual changes of the complex score with

the simulation progress.

After loading input files using the “Models” tab, go to the Extension's second tab (“Sim/Score”),

choose your output folder using the “Browse” button next to the “Output directory” field, and

click “Perform PyRy3D Simulation”.

Results Analysis

One of the most important goals of PyRy3D Chimera Extension is to make the PyRy3D’s

results analysis easier and more understandable. In order to achieve this goal, we’ve created a

set of features that allow for visualizing how PyRy3D scores particular structures with given set

of parameters. The user can show every element of PyRy3D scoring function, such as regions

outside the simulation box, or regions inside the density map.

The “Results display” window pops up after finishing the automatic evaluation of visualized

complex and after finishing a PyRy3D simulation. It contains a PyRy3D score (and its

individual components), and a set of buttons allowing the user to:

- Display the simulation box

- Display the simulation grid

- Highlight the complexes disordered regions

- Highlight collisions between components

- Highlight regions outside the simulation box

- Highlight regions inside the density map

- Highlight regions of the map that are empty

- Highlight regions outside of the density map

- Display user-defined restraints (if provided)

Each feature can be visualized in user's color of choice. After a user picks a color from the

palette, the square button will displayed the user-chosen color.

Generating input files

PyRy3D Chimera Extension offers a possibility to quickly generate files that can be used to

perform simulations using the PyRy3D server or standalone version. Even though you can run

PyRy3D simulations from the Chimera Extension’s interface, it’s much more efficient to

perform the simulations using the original, command line - based, PyRy3D software.

The Extension's third tab (“Input Gen”) contains a set of checkboxes. By checking and un-

checking those checkboxes, one can choose the types of input files that will be saved in the

older of choice (selected with “Generate files in” option) and clicking the “Generate defined

input files”.

The types of input files are:

- Structures (generated using the .PDB files loaded into Chimera using the first tab)

- Density map (simple copy of map loaded into Chimera using the first tab)

- Sequences (automatically generated based on the structures loaded into Chimera)

- Restraints (file is copied from a localization indicated in “Restraints file” field)

- Configuration file (generated using the parameters defined by the user in the “Parameters

window”)

Generating movies

After the simulation is finished, a user can investigate the whole process thanks to the animation

generator. The tool lets to generate animations that can be saved in one of many popular video

file formats.

A user can find the parameters necessary to generate an animation on the fourth tab, called

“Animations”.. The camera’s position does not change during the entire animation’s recording.

For this reason, the user has to first define the camera’s angle by opening and positioning his

density map in the Chimera window (using standard manipulation tools).

To generate a move, a user is supposed to define:

- “PyRy3D output files” folder – the folder that contains a set of models generated by a single

PyRy3D simulation. These models will serve as frames for the animation.

- A fraction of models that will serve as frames – in the “Record 1/n of the files”, the user can

define the fraction of models that will constitute the animation's frames. For example, if the

user has generated 1000 files, but wants the animation to be faster and only show 100 of

them, the “n” number should equal 10 (“Record 1/10 of the files”). After defining the

fraction, the “Number of frames” label should inform the user about the resulting total number

of frames that will be recorded.

- The output movie's file path – using the “Save movie file as” field.

- The output movie's format – using the “Movie format” menu.

- The folder that will store frame images – before generating a movie file, Chimera must first

take screenshots of each of the frames and store all of them in one location. The user can

define this location using the “Save images in” field.

- “Movie size” – the width and height of the output movie.

Create ranking of multiple complexes

The PyRy3D Chimera Extension allows for a quick evaluation of multiple complexes in order

to create a ranking based on criteria chosen by the user (e.g. distance restraints). Thanks to this

tool a user can evaluate complexes based on different set of PyRy3D configuration parameters

(level of clashes, quality of fit into map) or verify structures built with other tools (imagine

having 1000 models generated with docking tool (without any prior data about their possible

interactions) and then creating a ranking with PyRy3D that sorts models according to their

agreement with external data such as distances from chemical crosslinking or FRET).

The “Ranking” tab is the fifth tab of the PyRy3D Chimera Extension. Within this tab, a user can

define:

- The ranked models' source – using the radio buttons in the first field of the tab, a user can

choose to load the input models from Chimera's window, or from a previously prepared

folder. In the latter case, the files should be already tared (using, for example, the Extension's

input generator)

- The configuration file's source – using the tools available in the second field, the user can

define if the configuration file is supposed to be generated automatically based on the

“Parameters window”, or if the user's previously prepared file should be used.

- If experimental restraints will be used – if so, the user can check the “Use restraints file from

hard drive” radio button, and point to the file's location using the “Restraints file” field.

- The sequences file's source – using the tools available in the fourth field, the user can define

whether the sequences are supposed to be generated automatically based on the structures

loaded into Chimera, or if they should be loaded from a previously prepared file.

- Map file – an electron density map.

- Sorting methods – using the “Sort results by” menu on the bottom of the tab, the user can

choose if the ranking should be based on the overall PyRy3D score, or on one of its

components.

After defining all the necessary parameters, the user can click the “Create ranking” button to

start evaluating multiple complexes.

Clustering complexes

An option to cluster models generated from multiple PyRy3D simulations is also available from

the PyRy3D Chimera Extension.

The last tab of the Extension, titled “Clustering”, contains a set of parameters necessary to

perform a clustering of multiple complexes:

- “Input directory” – the directory that contains the files that will be clustered.

- “Map file” - electron density map file

- “Score type” - the score that will be used to arrange the files in the output file

- “Measure type” - the measure that will be used to compare the structures

- “Representation” - the models can be compared based on their full structures (“fa”), on their

backbones only (“ca”), or on their approximate shapes (“sphere”)

- “Number of structures” - the number of highest scored structures from the indicated directory,

that will be shown in the clustering output

- “Clustering threshold” - the threshold that will be used to group similar models into clusters

- “Output directory” - the directory that will contain the output files.

After defining all the necessary parameters, press the “Start clustering” button to start the

clustering process.

More materials about PyRy3D Chimera Extension can be found on the following website:

http://genesilico.pl/pyry3d/tutorials

