Modomics - A Database of RNA Modifications

ID Card:

Full name: tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase / FAD-dependent cmnm(5)s(2)U34 oxidoreductase
Synonym: TrmC, MnmC
GI: 20140544
Orf: yfcK, b2324
COG: COG4121
UniProt: P77182
Structures: | 3AWI | 3PS9 |
Alpha Fold Predicted Structure: AF-P77182-F1
Enzyme type: methyltransferase/oxidoreductase
Position of modification - modification: t:34 - mnm5s2U
t:34 - mnm5U


PDB Structures:


3AWI

Structure Description:

Title: Bifunctional tRNA modification enzyme MnmC from Escherichia coli
Classification: TRANSFERASE, OXIDOREDUCTASE
Technique: X-Ray Diffraction
Resolution: 3.0
R value free: 0.251
R value observed: 0.205
R value work: 0.204

Abstract of the PDB Structure's related Publication:

Post-transcriptional modifications of bases within the transfer RNAs (tRNA) anticodon significantly affect the decoding system. In bacteria and eukaryotes, uridines at the wobble position (U34) of some tRNAs are modified to 5-methyluridine derivatives (xm⁵U). These xm⁵U34-containing tRNAs read codons ending with A or G, whereas tRNAs with the unmodified U34 are able to read all four synonymous codons of a family box. In Escherichia coli (E.coli), the bifunctional enzyme MnmC catalyzes the two consecutive reactions that convert 5-carboxymethylaminomethyl uridine (cmnm⁵U) to 5-methylaminomethyl uridine (mnm⁵U). The C-terminal domain of MnmC (MnmC1) is responsible for the flavin adenine dinucleotide (FAD)-dependent deacetylation of cmnm⁵U to 5-aminomethyl uridine (nm⁵U), whereas the N-terminal domain (MnmC2) catalyzes the subsequent S-adenosyl-L-methionine-dependent methylation of nm⁵U, leading to the final product, mnm⁵U34. Here, we determined the crystal structure of E.coli MnmC containing FAD, at 3.0 Å resolution. The structure of the MnmC1 domain can be classified in the FAD-dependent glutathione reductase 2 structural family, including the glycine oxidase ThiO, whereas the MnmC2 domain adopts the canonical class I methyltransferase fold. A structural comparison with ThiO revealed the residues that may be involved in cmnm⁵U recognition, supporting previous mutational analyses. The catalytic sites of the two reactions are both surrounded by conserved basic residues for possible anticodon binding, and are located far away from each other, on opposite sides of the protein. These results suggest that, although the MnmC1 and MnmC2 domains are physically linked, they could catalyze the two consecutive reactions in a rather independent manner.

Download RCSB-PDB Structures:

Pdb Files   3AWI.pdb   3PS9.pdb  
Pdbx/mmCIF Files   3AWI.cif   3PS9.cif  


Protein sequence:

MKHYSIQPANLEFNAEGTPVSRDFDDVYFSNDNGLEETRYVFLGGNQLEVRFPEHPHPLFVVAESGFGTGLNFLTLWQAFDQFREAHPQAQLQRLHFISFEKFPLTRADLALAHQHWPELAPWAEQLQAQWPMPLPGCHRLLLDEGRVTLDLWFGDINELTSQLDDSLNQKVDAWFLDGFAPAKNPDMWTQNLFNAMARLARPGGTLATFTSAGFVRRGLQDAGFTMQKRKGFGRKREMLCGVMEQTLPLPCSAPWFNRTGSSKREAAIIGGGIASALLSLALLRRGWQVTLYCADEAPALGASGNRQGALYPLLSKHDEALNRFFSNAFTFARRFYDQLPVKFDHDWCGVTQLGWDEKSQHKIAQMLSMDLPAELAVAVEANAVEQITGVATNCSGITYPQGGWLCPAELTRNVLELAQQQGLQIYYQYQLQNLSRKDDCWLLNFAGDQQATHSVVVLANGHQISRFSQTSTLPVYSVAGQVSHIPTTPELAELKQVLCYDGYLTPQNPANQHHCIGASYHRGSEDTAYSEDDQQQNRQRLIDCFPQAQWAKEVDVSDKEARCGVRCATRDHLPMVGNVPDYEATLVEYASLAEQKDEAVSAPVFDDLFMFAALGSRGLCSAPLCAEILAAQMSDEPIPMDASTLAALNPNRLWVRKLLKGKAVKAG

Comments:

In E.coli (and many other bacteria) it is a bifunctional enzyme, composed of two domains that catalyze two successive reactions at the uridine wobble position 34 in tRNA: first a deacetylation reaction of cmnm5U into nm5U, then methylation of the amine group of nm5U to form mnm5U. In other organisms they may be unlinked (separate proteins), then identified as MnmC (former MnmC1) for the deacetylase and MnmD (former MnmC2) for the methyltransferase. In certain bacteria, the catalytic domain for the deacetylation reaction is absent in their genome and only the gene coding for MnmD is present. In other bacteria, MnmC and MnmD are both present. In E. coli MnmCD the two domains act independently. For tRNALeucmnm5Um the activity of methyltransferase domain was observed only in vitro ( Bujnicki et al. 2004).





Alpha Fold Predicted Structure:






Clear Selection and Reset Camera

Protein sequence:

M K H Y S I Q P A N L E F N A E G T P V S R D F D D V Y F S N D N G L E E T R Y V F L G G N Q L E V R F P E H P H P L F V V A E S G F G T G L N F L T L W Q A F D Q F R E A H P Q A Q L Q R L H F I S F E K F P L T R A D L A L A H Q H W P E L A P W A E Q L Q A Q W P M P L P G C H R L L L D E G R V T L D L W F G D I N E L T S Q L D D S L N Q K V D A W F L D G F A P A K N P D M W T Q N L F N A M A R L A R P G G T L A T F T S A G F V R R G L Q D A G F T M Q K R K G F G R K R E M L C G V M E Q T L P L P C S A P W F N R T G S S K R E A A I I G G G I A S A L L S L A L L R R G W Q V T L Y C A D E A P A L G A S G N R Q G A L Y P L L S K H D E A L N R F F S N A F T F A R R F Y D Q L P V K F D H D W C G V T Q L G W D E K S Q H K I A Q M L S M D L P A E L A V A V E A N A V E Q I T G V A T N C S G I T Y P Q G G W L C P A E L T R N V L E L A Q Q Q G L Q I Y Y Q Y Q L Q N L S R K D D C W L L N F A G D Q Q A T H S V V V L A N G H Q I S R F S Q T S T L P V Y S V A G Q V S H I P T T P E L A E L K Q V L C Y D G Y L T P Q N P A N Q H H C I G A S Y H R G S E D T A Y S E D D Q Q Q N R Q R L I D C F P Q A Q W A K E V D V S D K E A R C G V R C A T R D H L P M V G N V P D Y E A T L V E Y A S L A E Q K D E A V S A P V F D D L F M F A A L G S R G L C S A P L C A E I L A A Q M S D E P I P M D A S T L A A L N P N R L W V R K L L K G K A V K A G
100200300400500600SequenceGHITBSN

Secondary Structure Alphabet

  • G: 3-turn helix (310helix)
  • H: α-helix
  • I: 𝝅-helix (5 - turn helix)
  • T: Hydrogen Bonded Turn
  • B: β-sheet
  • S: Bend
  • C: Coil (residues not present in any of the above conformations)
  • N: Not assigned

Download PDB Structures & DSSP Secondary Structures:

Alpha Fold Pdb Files   AF-P77182-F1.pdb  
Alpha Fold Pdbx/mmCIF Files   AF-P77182-F1.cif  
DSSP Secondary Structures   P77182.dssp  





Publications:

Links:

_PubMed_
_EcoCyc_