Modomics - A Database of RNA Modifications

ID Card:

Full name: U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase
GI: 102126585
UniProt: Q86W50
Structures: | 2H00 | 6B91 | 6B92 | 6DU4 | 6DU5 | 6GFK | 6GFN | 6GT5 | 6M1U |
Alpha Fold Predicted Structure: AF-Q86W50-F1
Enzyme type: methyltransferase


PDB Structures:


2H00

Structure Description:

Title:
Classification:
Technique:

Abstract of the PDB Structure's related Publication:

N 6 -methyladenosine (m 6 A) is an abundant modification in messenger RNA and noncoding RNAs that affects RNA metabolism. Methyltransferase-like protein 16 (METTL16) is a recently confirmed m 6 A RNA methyltransferase that methylates U6 spliceosomal RNA and interacts with the 3'-terminal RNA triple helix of MALAT1 (metastasis-associated lung adenocarcinoma transcript 1). Here, we present two X-ray crystal structures of the N-terminal methyltransferase domain (residues 1-291) of human METTL16 (METTL16_291): an apo structure at 1.9 Å resolution and a post-catalytic S-adenosylhomocysteine-bound complex at 2.1 Å resolution. The structures revealed a highly conserved Rossmann fold that is characteristic of Class I S-adenosylmethionine-dependent methyltransferases and a large, positively charged groove. This groove likely represents the RNA-binding site and it includes structural elements unique to METTL16. In-depth analysis of the active site led to a model of the methyl transfer reaction catalyzed by METTL16. In contrast to the major m 6 A methyltransferase heterodimer METTL3/METTL14, full-length METTL16 forms a homodimer and METTL16_291 exists as a monomer based on size-exclusion chromatography. A native gel-shift assay shows that METTL16 binds to the MALAT1 RNA triple helix, but monomeric METTL16_291 does not. Our results provide insights into the molecular structure of METTL16, which is distinct from METTL3/METTL14.

Download RCSB-PDB Structures:

Pdb Files   2H00.pdb   6B91.pdb   6B92.pdb   6DU4.pdb   6DU5.pdb   6GFK.pdb   6GFN.pdb   6GT5.pdb   6M1U.pdb  
Pdbx/mmCIF Files   2H00.cif   6B91.cif   6B92.cif   6DU4.cif   6DU5.cif   6GFK.cif   6GFN.cif   6GT5.cif   6M1U.cif  


Protein sequence:

MALSKSMHARNRYKDKPPDFAYLASKYPDFKQHVQINLNGRVSLNFKDPEAVRALTCTLLREDFGLSIDIPLERLIPTVPLRLNYIHWVEDLIGHQDSDKSTLRRGIDIGTGASCIYPLLGATLNGWYFLATEVDDMCFNYAKKNVEQNNLSDLIKVVKVPQKTLLMDALKEESEIIYDFCMCNPPFFANQLEAKGVNSRNPRRPPPSSVNTGGITEIMAEGGELEFVKRIIHDSLQLKKRLRWYSCMLGKKCSLAPLKEELRIQGVPKVTYTEFCQGRTMRWALAWSFYDDVTVPSPPSKRRKLEKPRKPITFVVLASVMKELSLKASPLRSETAEGIVVVTTWIEKILTDLKVQHKRVPCGKEEVSLFLTAIENSWIHLRRKKRERVRQLREVPRAPEDVIQALEEKKPTPKESGNSQELARGPQERTPCGPALREGEAAAVEGPCPSQESLSQEENPEPTEDERSEEKGGVEVLESCQGSSNGAQDQEASEQFGSPVAERGKRLPGVAGQYLFKCLINVKKEVDDALVEMHWVEGQNRDLMNQLCTYIRNQIFRLVAVN

Comments:

METTL16 is an RNA N6-methyltransferase that selectively modifies adenosine residues at their N6 position in a discrete group of RNAs, contributing to the regulatory mechanism governing S-adenosyl-L-methionine homeostasis through the modulation of MAT2A transcript levels ( Pendleton et al. 2017, Mendel et al. 2018, Doxtader et al. 2018, Yu et al. 2021, Mendel et al. 2021). It is proficient in N6-methylating a subset of messenger RNAs (mRNAs) as well as U6 small nuclear RNAs (U6 snRNAs) ( Pendleton et al. 2017). Unlike the METTL3-METTL14 heterodimer, METTL16 exhibits specificity, requiring both a 5'UACAGAGAA-3' nonamer sequence and a particular RNA conformation for methylation ( Pendleton et al. 2017, Mendel et al. 2018, Doxtader et al. 2018). It plays an instrumental role in the homeostasis of S-adenosyl-L-methionine. In conditions of S-adenosyl-L-methionine abundance, METTL16 interacts with the 3'-UTR of MAT2A mRNA and specifically N6-methylates the first hairpin, thereby preventing U2AF1/U2AF35 from recognizing the 3'-splice site and subsequently inhibiting the splicing and protein production of S-adenosylmethionine synthase ( Pendleton et al. 2017, Mendel et al. 2021). Under S-adenosyl-L-methionine-limited conditions, it still binds to the 3'-UTR of MAT2A mRNA but stalls due to the absence of a methyl donor, thereby promoting MAT2A expression ( Pendleton et al. 2017 ). Beyond mRNAs, it also mediates the N6-methylation of U6 snRNA, specifically targeting adenine at position 43 ( Pendleton et al. 2017 , Warda et al. 2017, Aoyama et al. 2020).





Alpha Fold Predicted Structure:






Clear Selection and Reset Camera

Protein sequence:

M A L S K S M H A R N R Y K D K P P D F A Y L A S K Y P D F K Q H V Q I N L N G R V S L N F K D P E A V R A L T C T L L R E D F G L S I D I P L E R L I P T V P L R L N Y I H W V E D L I G H Q D S D K S T L R R G I D I G T G A S C I Y P L L G A T L N G W Y F L A T E V D D M C F N Y A K K N V E Q N N L S D L I K V V K V P Q K T L L M D A L K E E S E I I Y D F C M C N P P F F A N Q L E A K G V N S R N P R R P P P S S V N T G G I T E I M A E G G E L E F V K R I I H D S L Q L K K R L R W Y S C M L G K K C S L A P L K E E L R I Q G V P K V T Y T E F C Q G R T M R W A L A W S F Y D D V T V P S P P S K R R K L E K P R K P I T F V V L A S V M K E L S L K A S P L R S E T A E G I V V V T T W I E K I L T D L K V Q H K R V P C G K E E V S L F L T A I E N S W I H L R R K K R E R V R Q L R E V P R A P E D V I Q A L E E K K P T P K E S G N S Q E L A R G P Q E R T P C G P A L R E G E A A A V E G P C P S Q E S L S Q E E N P E P T E D E R S E E K G G V E V L E S C Q G S S N G A Q D Q E A S E Q F G S P V A E R G K R L P G V A G Q Y L F K C L I N V K K E V D D A L V E M H W V E G Q N R D L M N Q L C T Y I R N Q I F R L V A V N

Secondary Structure Alphabet

  • G: 3-turn helix (310helix)
  • H: α-helix
  • I: 𝝅-helix (5 - turn helix)
  • T: Hydrogen Bonded Turn
  • B: β-sheet
  • S: Bend
  • C: Coil (residues not present in any of the above conformations)
  • N: Not assigned

Download PDB Structures & DSSP Secondary Structures:

Alpha Fold Pdb Files   AF-Q86W50-F1.pdb  
Alpha Fold Pdbx/mmCIF Files   AF-Q86W50-F1.cif  
DSSP Secondary Structures   Q86W50.dssp  





Publications:

Title Authors Journal Details PubMed Id DOI
The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK Cell [details] 28525753 10.1016/j.cell.2017.05.003