Published on None in volume (2021) Nature 593: 597-601 .
PubMed ID: 33902106
DOI: 10.1038/s41586-021-03536-w
Abstract:
The N 6 -methyladenosine (m 6 A) is an abundant internal RNA modification 1,2 catalysed predominantly by the METTL3-METTL14 methyltransferase complex 3,4 . The m 6 A writer METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but its true therapeutic importance is still unknown 5-7 . Here we present the identification and characterization of a highly potent and selective first-in-class catalytic inhibitor of METTL3 (STM2457) and its co-crystal structure bound to METTL3/METTL14. Treatment with STM2457 leads to reduced AML growth, and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m 6 A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various AML mouse models, specifically targeting key stem-cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA modifying enzymes represents a promising new avenue for anti-cancer therapy.