Modomics - A Database of RNA Modifications

Published on Oct. 1, 2007 in RNA Biol volume 4.

PubMed ID: 17993784


Abstract:

RNA-guided pseudouridine (Psi) synthesis in Archaea and Eukarya requires a four-protein one-RNA containing box H/ACA ribonucleoprotein (RNP) complex. The proteins in the archaeal RNP are aCbf5, aNop10, aGar1 and L7Ae. Pyrococcus aCbf5-aNop10 is suggested to be the minimal catalytic core in this synthesis and the activity is enhanced by L7Ae and aGar1. The protein aCbf5 is homologous to eukaryal Cbf5 (dyskerin, NAP57) as well as to bacterial TruB and eukaryal Pus4; the last two produce YPsi55 in tRNAs in a guide RNA-independent manner. Here, using recombinant Methanocaldococcus jannaschii proteins, we report that aCbf5 and aGar1 together can function as a tRNA Psi55 synthase in a guide RNA-independent manner. This activity is enhanced by aNop10, but not by L7Ae. The aCbf5 alone can also produce Psi55 in tRNAs that contain the canonical 3'-CCA sequence and this activity is stimulated by aGar1. These results suggest that the roles of accessory proteins are different in guide RNA-dependent and independent Psi synthesis by aCbf5. The presence of conserved C (or U) and A at tRNA positions 56 and 58, respectively, which are required for TruB/Pus4 activity, is not essential for aCbf5-mediated Psi55 formation. Conserved A58 in tRNA normally forms a tertiary reverse Hoogstein base pair with an equally conserved U54. This base pair is recognized by TruB. Apparently aCbf5 does not require this base pair to recognize U55 for conversion to Psi55.


This publication refers to following proteins: