Published on May 18, 2005 in EMBO J volume 24.
PubMed ID: 15861125
Abstract:
The mutation sufY204 mediates suppression of a +1 frameshift mutation in the histidine operon of Salmonella enterica serovar Typhimurium and synthesis of two novel modified nucleosides in tRNA. The sufY204 mutation, which results in an amino-acid substitution in a protein, is, surprisingly, dominant over its wild-type allele and thus it is a "gain of function" mutation. One of the new nucleosides is 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modified by addition of a C(10)H(17) side chain of unknown structure. Increased amounts of both nucleosides in tRNA are correlated to gene dosage of the sufY204 allele, to an increased efficiency of frameshift suppression, and to a decreased amount of the wobble nucleoside mnm(5)s(2)U34 in tRNA. Purified tRNA(Gln)(cmnm(5)s(2)UUG) in the mutant strain contains a modified nucleoside similar to the novel nucleosides and the level of aminoacylation of tRNA(Gln)(cmnm(5)s(2)UUG) was reduced to 26% compared to that found in the wild type (86%). The results are discussed in relation to the mechanism of reading frame maintenance and the evolution of modified nucleosides in tRNA.