Modomics - A Database of RNA Modifications

Published on May 4, 2011 in Cell Metab. volume 13(5).

PubMed ID: 21531335

DOI: 10.1016/j.cmet.2011.04.002


Precise control of mitochondrial DNA gene expression is critical for regulation of oxidative phosphorylation capacity in mammals. The MTERF protein family plays a key role in this process, and its members have been implicated in regulation of transcription initiation and site-specific transcription termination. We now demonstrate that a member of this family, MTERF4, directly controls mitochondrial ribosomal biogenesis and translation. MTERF4 forms a stoichiometric complex with the ribosomal RNA methyltransferase NSUN4 and is necessary for recruitment of this factor to the large ribosomal subunit. Loss of MTERF4 leads to defective ribosomal assembly and a drastic reduction in translation. Our results thus show that MTERF4 is an important regulator of translation in mammalian mitochondria.

This publication refers to following proteins: