Published on Nov. 28, 2014 in Nat Commun. volume 5.

PubMed ID: 25430002

DOI: 10.1038/ncomms6630


Abstract:

Recent discoveries of reversible N(6)-methyladenosine (m(6)A) methylation on messenger RNA (mRNA) and mapping of m(6)A methylomes in mammals and yeast have revealed potential regulatory functions of this RNA modification. In plants, defects in m(6)A methyltransferase cause an embryo-lethal phenotype, suggesting a critical role of m(6)A in plant development. Here, we profile m(6)A transcriptome-wide in two accessions of Arabidopsis thaliana and reveal that m(6)A is a highly conserved modification of mRNA in plants. Distinct from mammals, m(6)A in A. thaliana is enriched not only around the stop codon and within 3'-untranslated regions, but also around the start codon. Gene ontology analysis indicates that the unique distribution pattern of m(6)A in A. thaliana is associated with plant-specific pathways involving the chloroplast. We also discover a positive correlation between m(6)A deposition and mRNA abundance, suggesting a regulatory role of m(6)A in plant gene expression.


This publication refers to following proteins:

Copyright © Genesilico - All rights reserved
If you have any advice or suggestions for corrections or improvements, please contact: Pietro Boccaletto