Modomics - A Database of RNA Modifications

Search for m l>"okphuv


Modifications

Name Short name Abbreviation New Nomenclature
((2R,3S,4R,5S)-5-(2,6-diamino-9H-purin-9-YL)-3,4-dihydroxy-tetrahydrofuran-2-YL)methyl dihydrogen phosphate N6G 2000000052X
((2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-(2- ((((2R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)- 3,4-dihydroxytetrahydrofuran-2-yl)methyl)amino)-2-oxoethyl)-4- hydroxytetrahydrofuran-2-yl)methyl phosphate URU 3000000075U
(1S)-1,4-anhydro-1-(1-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-5-O-phosphono-D-xylitol M1Y 3000000048X
(1S)-1,4-anhydro-1-(2,4-difluoro-5-methylphenyl)-5-O-phosphono-D-ribitol NF2 2000000053X
(1S)-1,4-anhydro-1-(3-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-5-O-phosphono-D-ribitol 3TD 2000000008X
(2R,4S)-1-[(4R)-3,4-dihydroxytetrahydrofuran-2-YL]-5-[(methylamino)methyl]-1,2,3,4-tetrahydropyrimidine-2,4-diol-5'-monophosphate pmnm5U { 511551U
(2~{R})-2-azanyl-4-[5-[(2~{S},3~{R},4~{S},5~{R})-3,4-bis(oxidanyl)-5-(phosphonooxymethyl)oxolan-2-yl]-3-methyl-2,6-bis(oxidanylidene)pyrimidin-1-yl]butanoic acid B8N 333000012Y
(5S)-5-{3-[(3S)-3-amino-3-carboxypropyl]-1-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl}-2,5-anhydro-1-O-phosphono-L-arabinitol C4J 3000000028X
(5S,6R)-5-fluoro-6-hydroxy-pseudouridine-5'-monophosphate FHU 3000000035X
(D)-2'-methylselenyl-2'-deoxycytidine-5'-phosphate CSL 3000000084C
(E)-N-{[4-oxo-1-(5-O-phosphono-beta-D-arabinofuranosyl)-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl]methylidene}glycin 1RN 3000000003X
1,2'-O-dimethyladenosine m1Am œ 01A
1,2'-O-dimethyladenosine-5'-monophosphate pm1Am 01551A
1,2'-O-dimethylguanosine m1Gm ε 01G
1,2'-O-dimethylguanosine-5'-monophosphate pm1Gm ε 01551G
1,2'-O-dimethylinosine m1Im ξ 019A
1,2'-O-dimethylinosine-5'-monophosphate pm1Im ξ 019551A
1-(2,6-dideoxy-2-fluoro-5-O-phosphono-alpha-L-talofuranosyl)pyrimidine-2,4(1H,3H)-dione U5M 3000000067U
1-(2,6-dideoxy-2-fluoro-5-O-phosphono-beta-D-allofuranosyl)pyrimidine-2,4(1H,3H)-dione U5R 3000000068U
1-(2-deoxy-5-O-phosphono-beta-D-erythro-pentofuranosyl)-5-methyl-2-selanylpyrimidin-4(1H)-one US3 1000000076X
1-(5-O-phosphono-beta-D-ribofuranosyl)-2-selanylpyrimidin-4(1H)-one pse2U 20551U
1-(5-O-phosphono-beta-D-ribofuranosyl)-3-(1H-1,2,3-triazol-5-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine 7AT 2000000014X
1-(5-O-phosphono-beta-D-ribofuranosyl)-4-selanylpyrimidin-2(1H)-one US5 2000000077X
1-(beta-D-ribofuranosyl)-pyrimidin-2-one-5'-phosphate PYO 2000000058X
1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine m1acp3Y α 1309U
1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine-5'-monophosphate pm1acp3Y α 1309551U
1-methyladenosine m1A " 1A
1-methylguanosine m1G K 1G
1-methylinosine m1I O 19A
1-methylinosine-5'-monophosphate pm1I O 19551A
1-methylpseudouridine m1Y ] 19U
1-methylpseudouridine-5'-monophosphate pm1Y ] 19551U
1-{2,5-dideoxy-2-fluoro-4-[(phosphonooxy)methyl]-alpha-L-lyxofuranosyl}pyrimidine-2,4(1H,3H)-dione U4M 3000000066U
1N-methylguanosine-5'-monophosphate pm1G K 1551G
2',5-dimethyluridine-5'-monophosphate pm5Um \ 05551U
2'-(N-acetamide)-cytidine-5'-monophosphate M5M 3000000049C
2'-F,4'-beta-OMe Uridine 5'-(dihydrogen phosphate) UFB 3000000070U
2'-F-4'-OMe uridine 5'-monophosphate UMO 3000000072U
2'-O-[(5'-phospho)ribosyl]adenosine-5'-monophosphate pAr(p) ^ 00551A
2'-O-methyl-5-hydroxymethylcytidine hm5Cm ¡ 051C
2'-O-methyl-5-hydroxymethylcytidine-5'-monophosphate phm5Cm 051551C
2'-O-methyladenosine Am : 0A
2'-O-methyladenosine 5'-(dihydrogen phosphate) pAm : 0551A
2'-O-methylcytidine Cm B 0C
2'-O-methylguanosine Gm # 0G
2'-O-methylinosine Im 09A
2'-O-methylinosine-5'-monophosphate pIm 09551A
2'-O-methylpseudouridine Ym Ζ 09U
2'-O-methylpseudouridine-5'-monophosphate pYm Z 09551U
2'-O-methyluridine Um J 0U
2'-O-methyluridine 5-oxyacetic acid methyl ester mcmo5Um Ͽ 0503U
2'-O-methyluridine 5-oxyacetic acid methyl ester-5'-monophosphate pmcmo5Um 0503551U
2'-O-ribosylguanosine (phosphate)-5'-monophosphate pGr(p) 00551G
2'-OMe,4'beta-OMe uridine 5'-(dihydrogen phosphate) UOB 3000000074U
2'-SE-methyl-2'-selenoguanosine 5'-(dihydrogen phosphate) XUG 3000000078G
2'-amine-cytidine-5'-monophosphate A5M 3000000017C
2'-amino-2'-deoxyadenosine 2AD 3000000004A
2'-methylselenyl-2'-deoxyuridine-5'-phosphate UMS 3000000073U
2,8-dimethyladenosine m2,8A ± 28A
2,8-dimethyladenosine-5'-monophosphate pm2,8A 28551A
2- methylthiomethylenethio-N6-isopentenyl-adenosine msms2i6A £ 21161A
2- methylthiomethylenethio-N6-isopentenyl-adenosine-5'-monophosphate pmsms2i6A 21161551A
2-amino-9-(6-deoxy-5-O-phosphono-beta-D-allofuranosyl)-3,9-dihydro-6H-purin-6-one GMX 3000000039G
2-amino-9-[2-deoxyribofuranosyl]-9H-purine-5'-monophosphate 2PR 1000000005X
2-geranylthiouridine-5'-monophosphate pges2U 21551U
2-lysidine-5'-monophosphate pk2C } 21551C
2-methyladenosine m2A / 2A
2-methyladenosine-5'-monophosphate pm2A / 2551A
2-methylthio cyclic N6-threonylcarbamoyladenosine ms2ct6A ÿ 2164A
2-methylthio cyclic N6-threonylcarbamoyladenosine-5'-monophosphate pms2ct6A 2164551A
2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine ms2io6A 2160A
2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine-5'-monophosphate pms2io6A 2160551A
2-methylthio-N6-hydroxynorvalylcarbamoyladenosine ms2hn6A 2163A
2-methylthio-N6-hydroxynorvalylcarbamoyladenosine-5'-monophosphate pms2hn6A 2163551A
2-methylthio-N6-isopentenyl-adenosine-5'-monophosphate pms2i6A * 2161551A
2-methylthio-N6-isopentenyladenosine ms2i6A * 2161A
2-methylthio-N6-methyladenosine ms2m6A 621A
2-methylthio-N6-methyladenosine-5'-monophosphate pms2m6A 621551A
2-methylthio-N6-threonylcarbamoyladenosine ms2t6A [ 2162A
2-methylthio-N6-threonylcarbamoyladenosine-5'-monophosphate pms2t6A [ 2162551A
2-thio-2'-O-methyluridine s2Um 02U
2-thio-2'-O-methyluridine-5'-monophosphate ps2Um 02551U
2-thiocytidine-5'-monophosphate ps2C % 2551C
2N-methylguanosine-5'-monophosphate pm2G L 2551G
3'-amino-3'-deoxyadenosine 5'-(dihydrogen phosphate) 8AN 3000000015A
3'-deoxyadenosine-5'-monophosphate 3DA 1000000007A
3'-deoxyguanosine 5'-monophosphate GDO 1000000038G
3,2'-O-dimethyluridine m3Um σ 03U
3,2'-O-dimethyluridine-5'-monophosphate pm3Um 03551U
3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine acp3D Ð 308U
3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine-5'-monophosphate pacp3D 308551U
3-(3-amino-3-carboxypropyl)pseudouridine acp3Y Þ 309U
3-(3-amino-3-carboxypropyl)pseudouridine-5'-monophosphate pacp3Y 1309551U
3-(3-amino-3-carboxypropyl)uridine acp3U X 30U
3-(3-amino-3-carboxypropyl)uridine-5'-monophosphate pacp3U 30551U
3-Methylcytidine- 5'-monophosphate pm3C ' 3551C
3-[1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl]-1-[5-O-(trihydroxy-lambda~5~-phosphanyl)-beta-D-ribofuranosyl]-1H-pyrazolo[3,4-d]pyrimidin-4-amine A7C 2000000019X
3-ethynyl-1-(5-O-phosphono-beta-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine A7E 2000000020X
3-methylcytidine m3C ' 3C
3-methylpseudouridine m3Y Κ 39U
3-methylpseudouridine-5'-monophosphate pm3Y Κ 39551U
3-methyluridine m3U δ 3U
3-methyluridine-5'-monophosphate pm3U 3551U
4'-thio-4'-deoxy-cytosine-5'-monophosphate S4C 3000000061C
4-amino-1-(2-deoxy-2-fluoro-5-O-phosphono-beta-D-arabinofuranosyl)pyrimidin-2(1H)-one CFL 3000000032C
4-amino-1-{2,5-anhydro-4-[(phosphonooxy)methyl]-alpha-L-lyxofuranosyl}pyrimidin-2(1H)-one 10C 3000000001C
4-demethylwyosine imG-14 4G
4-demethylwyosine-5'-monophosphate pimG-14 4551G
4-methyl, cytidine-5'-monophosphate pm4C 4551C
4-thiouridine-5'-monophosphate ps4U 4 74551U
4N,O2'-methylcytidine-5'-monophosphate pm4Cm Λ 04551C
5' (3' -dephosphomalonyl-CoA) malonyl-CoApN 4255N
5' nicotinamide adenine dinucleotide NADpN Ξ 255N
5'-O-[(S)-hydroxy(methyl)phosphoryl]adenosine 45A 5000000009A
5,2'-O-dimethylcytidine m5Cm τ 05C
5,2'-O-dimethylcytidine-5'-monophosphate pm5Cm 05551C
5,2'-O-dimethyluridine m5Um \ 05U
5,6-dihydrouridine-5'-monophosphate pD D 8551U
5-(O-methylaceto)-2-thio-2-deoxy-uridine-5'-monophosphate pmcm5s2U 3 2521551U
5-(carboxyhydroxymethyl)-2'-O-methyluridine methyl ester mchm5Um b 0522U
5-(carboxyhydroxymethyl)-2'-O-methyluridine methyl ester-5'-monophosphate pmchm5Um 0522551U
5-(carboxyhydroxymethyl)uridine methyl ester mchm5U , 522U
5-(carboxyhydroxymethyl)uridine methyl ester-5'-monophosphate pmchm5U , 522551U
5-(carboxymethoxy) uridine-5'-monophosphate pcmo5U V 502551U
5-(hydroxymethyl)cytidine 5'-(dihydrogen phosphate) phm5C 51551C
5-(isopentenylaminomethyl)-2'-O-methyluridine inm5Um ¼ 0583U
5-(isopentenylaminomethyl)-2'-O-methyluridine-5'-monophosphate pinm5Um ¼ 0583551U
5-(isopentenylaminomethyl)-2-thiouridine inm5s2U ½ 2583U
5-(isopentenylaminomethyl)-2-thiouridine-5'-monophosphate pinm5s2U 2583551U
5-(isopentenylaminomethyl)uridine inm5U ¾ 583U
5-(isopentenylaminomethyl)uridine-5'-monophosphate pinm5U 583551U
5-aminomethyl-2-geranylthiouridine nm5ges2U Δ 21510U
5-aminomethyl-2-geranylthiouridine-5'-monophosphate pnm5ges2U Δ 21510551U
5-aminomethyl-2-selenouridine nm5se2U π 20510U
5-aminomethyl-2-selenouridine-5'-monophosphate pnm5se2U π 20510551U
5-aminomethyl-2-thiouridine nm5s2U 2510U
5-aminomethyl-2-thiouridine-5'-monophosphate pnm5s2U 2510551U
5-aminomethyluridine nm5U 510U
5-aminomethyluridine-5'-monophosphate pnm5U 510551U
5-bromo-2'-deoxy-cytidine-5'-monophosphate CBR 1000000030C
5-bromo-2'-deoxyuridine-5'-monophosphate BRU 1000000027U
5-bromo-uridine-5'-monophosphate 5BU 2000000010U
5-bromocytidine 5'-(dihydrogen phosphate) CBV 2000000031C
5-carbamoylhydroxymethyluridine nchm5U r 531U
5-carbamoylhydroxymethyluridine-5'-monophosphate pnchm5U 531551U
5-carbamoylmethyl-2'-O-methyluridine ncm5Um ~ 053U
5-carbamoylmethyl-2'-O-methyluridine-5'-monophosphate pncm5Um 053551U
5-carbamoylmethyl-2-thiouridine ncm5s2U l 253U
5-carbamoylmethyl-2-thiouridine-5'-monophosphate pncm5s2U l 253551U
5-carbamoylmethyluridine ncm5U & 53U
5-carbamoylmethyluridine-5'-monophosphate pncm5U & 53551U
5-carboxyhydroxymethyluridine chm5U 520U
5-carboxyhydroxymethyluridine-5'-monophosphate pchm5U 520551U
5-carboxymethyl-2-thiouridine cm5s2U 2540U
5-carboxymethyl-2-thiouridine-5'-monophosphate pcm5s2U 2540551U
5-carboxymethylaminomethyl-2'-O-methyluridine cmnm5Um ) 051U
5-carboxymethylaminomethyl-2'-O-methyluridine-5'-monophosphate pcmnm5Um ) 051551U
5-carboxymethylaminomethyl-2-geranylthiouridine cmnm5ges2U f 2151U
5-carboxymethylaminomethyl-2-geranylthiouridine-5'-monophosphate pcmnm5ges2U f 2151551U
5-carboxymethylaminomethyl-2-selenouridine cmnm5se2U 2051U
5-carboxymethylaminomethyl-2-selenouridine-5'-monophosphate pcmnm5se2U 2051551U
5-carboxymethylaminomethyl-2-thiouridine cmnm5s2U $ 251U
5-carboxymethylaminomethyl-2-thiouridine-5'-monophosphate pcmnm5s2U $ 251551U
5-carboxymethylaminomethyluridine cmnm5U ! 51U
5-carboxymethylaminomethyluridine-5'-monophosphate pcmnm5U ! 51551U
5-carboxymethyluridine cm5U 52U
5-carboxymethyluridine-5'-monophosphate pcm5U 52551U
5-cyanomethyluridine cnm5U Ѷ 55U
5-cyanomethyluridine-5'-monophosphate pcnm5U Ѷ 55551U
5-formyl-2'-O-methylcytidine f5Cm ° 071C
5-formyl-2'-O-methylcytidine-5'-monophosphate pf5Cm ° 071551C
5-formylcytidine f5C > 71C
5-formylcytidine 5'-(dihydrogen phosphate) pf5C > 71551C
5-hydroxycytidine-5'-monophosphate pho5C Ç 50551C
5-hydroxymethylcytidine hm5C 51C
5-hydroxyuridine-5'-monophosphate pho5U 50551U
5-iodo-cytidine-5'-monophosphate 5IC 2000000012C
5-iodouridine-5'-monophosphate IU 2000000044U
5-methoxycarbonylmethyl-2'-O-methyluridine mcm5Um 0521U
5-methoxycarbonylmethyl-2'-O-methyluridine-5'-monophosphate pmcm5Um 0521551U
5-methoxycarbonylmethyl-2-thiouridine mcm5s2U 3 2521U
5-methoxycarbonylmethyluridine mcm5U 1 521U
5-methoxycarbonylmethyluridine-5'-monophosphate pmcm5U 1 521551U
5-methoxyuridine mo5U 5 501U
5-methoxyuridine-5'-monophosphate pmo5U 5 501551U
5-methyl-2-thiouridine m5s2U F 25U
5-methyl-2-thiouridine-5'-monophosphate pm5s2U F 25551U
5-methylaminomethyl-2-geranylthiouridine mnm5ges2U h 21511U
5-methylaminomethyl-2-geranylthiouridine-5'-monophosphate pmnm5ges2U 21511551U
5-methylaminomethyl-2-selenouridine mnm5se2U 20511U
5-methylaminomethyl-2-selenouridine-5'-monophosphate pmnm5se2U 20511551U
5-methylaminomethyl-2-thiouridine mnm5s2U S 2511U
5-methylaminomethyl-2-thiouridine-5'-monophosphate pmnm5s2U S 2511551U
5-methylaminomethyluridine mnm5U { 511U
5-methylcytidine m5C ? 5C
5-methylcytidine-5'-monophosphate pm5C ? 5551C
5-methyldihydrouridine m5D ρ 58U
5-methyldihydrouridine-5'-monophosphate pm5D 58551U
5-methyluridine m5U T 5U
5-methyluridine-5'-monophosphate pm5U T 5551U
5-nitrocytidine 5'-(dihydrogen phosphate) N5M 2000000051C
5-taurinomethyl-2-thiouridine tm5s2U 254U
5-taurinomethyl-2-thiouridine-5'-monophosphate ptm5s2U 254551U
5-taurinomethyluridine tm5U Ê 54U
5-taurinomethyluridine-5'-monophosphate ptm5U Ê 54551U
6N-dimethyladenosine-5'-monophosphate pm6,6A 66551A
7-aminocarboxypropyl-demethylwyosine yW-86 ¥ 47G
7-aminocarboxypropyl-demethylwyosine-5'-monophosphate pyW-86 47551G
7-aminocarboxypropylwyosine yW-72 Ω 347G
7-aminocarboxypropylwyosine methyl ester yW-58 348G
7-aminocarboxypropylwyosine methyl ester-5'-monophosphate pyW-58 348551G
7-aminocarboxypropylwyosine-5'-monophosphate pyW-72 347551G
7-aminomethyl-7-carbaguanine preQ1base 101000G
7-aminomethyl-7-deazaguanosine preQ1 101G
7-aminomethyl-7-deazaguanosine-5'-monophosphate ppreQ1 101551G
7-cyano-7-deazaguanosine-5'-monophosphate ppreQ0 100551G
7-methylguanosine m7G 7 7G
7N-methyl-8-hydroguanosine-5'-monophosphate pm7G 7 7551G
8-aza-nebularine-5'-monophosphate 8AZ 2000000016X
8-bromo-2'-deoxyguanosine-5'-monophosphate BGM 1000000026G
8-bromoguanosine 5'-(dihydrogen phosphate) GRB 2000000040G
8-methyladenosine m8A â 8A
8-methyladenosine-5'-monophosphate pm8A 8551A
9-(2-deoxy-2-fluoro-5-O-phosphono-beta-D-arabinofuranosyl)-9H-purin-6-amine A5L 3000000082A
9-beta-D-ribofuranosyl-9H-purin-2-amine MTU 2000000050X
D-ribofuranosyl-benzene-5'-monophosphate PYY 2000000059X
N(1)-methyladenosine 5'-monophosphate pm1A " 1551A
N(4)-acetylcytidine-5'-monophosphate pac4C M 42551C
N-(2,2-dimethoxyethyl)-[[(2R,3S,5S)-3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphonamidicacid MU4 4000045551U
N1-deaza-adenosine-5'-monophosphate 1DP 2000000002X
N1-protonated adenosine-5'-monophosphate AP7 2000000024A
N2,2'-O-dimethylguanosine m2Gm γ 02G
N2,2'-O-dimethylguanosine-5'-monophospate pm2Gm 02551G
N2,7,2'-O-trimethylguanosine m2,7Gm æ 027G
N2,7,2'-O-trimethylguanosine-5'-monophosphate pm2,7Gm 027551G
N2,7-dimethylguanosine m2,7G 27G
N2,7-dimethylguanosine cap (cap DMG) m2,7GpppN ® 279553N
N2,7-dimethylguanosine-5'-monophosphate pm2,7G 27551G
N2,N2,2'-O-trimethylguanosine m2,2Gm | 022G
N2,N2,2'-O-trimethylguanosine-5'-monophospate pm2,2Gm | 022551G
N2,N2,7-trimethylguanosine m2,2,7G 227G
N2,N2,7-trimethylguanosine cap (cap TMG) m2,2,7GpppN 2279553N
N2,N2,7-trimethylguanosine-5'-monophosphate pm2,2,7G 227551G
N2,N2-dimethylguanosine m2,2G R 22G
N2-dimethylguanosine-5'-monophosphate pm2,2G R 22551G
N2-methylguanosine m2G L 2G
N3-protonated cytidine-5'-monophosphate CH 2000000034C
N4,2'-O-dimethylcytidine m4Cm Λ 04C
N4,N4,2'-O-trimethylcytidine m4,4Cm β 044C
N4,N4,2'-O-trimethylcytidine-5'-monophospate pm4,4Cm 044551C
N4,N4-dimethylcytidine m4,4C μ 44C
N4-acetyl-2'-O-methylcytidine ac4Cm 042C
N4-methylcytidine m4C ν 4C
N6,2'-O-dimethyladenosine m6Am χ 06A
N6,2'-O-dimethyladenosine-5'-monophospate pm6Am χ 06551A
N6,N6,2'-O-trimethyladenosine m6,6Am η 066A
N6,N6,2'-O-trimethyladenosine-5'-monophospate pm6,6Am 066551A
N6,N6-dimethyladenosine m6,6A ζ 66A
N6-(cis-hydroxyisopentenyl)adenosine-5'-monophospate pio6A ` 60551A
N6-acetyladenosine-5'-monophospate pac6A 64551A
N6-dimethyl-3'-amino-adenosine-5'-monophosphate 5AA 3000000081A
N6-formyladenosine f6A Ϩ 67A
N6-formyladenosine-5'-monophospate pf6A 67551A
N6-glycinylcarbamoyladenosine g6A 65A
N6-glycinylcarbamoyladenosine-5'-monophosphate pg6A 65551A
N6-hydroxymethyladenosine hm6A Ϫ 68A
N6-hydroxymethyladenosine-5'-monophosphate phm6A 68551A
N6-hydroxynorvalylcarbamoyladenosine hn6A 63A
N6-hydroxynorvalylcarbamoyladenosine-5'-monophosphate phn6A 63551A
N6-isopentenyl-adenosine-5'-monophosphate pi6A + 61551A
N6-methyl-N6-threonylcarbamoyladenosine m6t6A E 662A
N6-methyl-N6-threonylcarbamoyladenosine-5'-monophosphate pm6t6A E 662551A
N6-methyl-adenosine pentaphosphate 5' cap (cap Ap5N) m6ApppppN 64555N
N6-methyl-adenosine tetraphosphate 5' cap (cap Ap4N) m6AppppN 64554N
N6-methyl-adenosine triphosphate 5' cap (cap A) m6ApppN 64553N
N6-methyladenosine m6A = 6A
N6-methyladenosine-5'-monophosphate pm6A = 6551A
N6-threonylcarbamoyladenosine t6A 6 62A
N6-threonylcarbamoyladenosine-5'-monophosphate pt6A 6 62551A
N7-methyl-guanosine tetraphosphate 5' cap (cap m7Gp4N) m7GppppN 79554N
N7-methyl-guanosine cap (cap 0) m7GpppN © 79553N
O2'-methylcytidine-5'-monophosphate pCm B 0551C
O2'-methylguanosine-5'-monophosphate pGm # 0551G
O2'-methyluridine 5'-monophosphate pUm J 0551U
[(1R,3R,4R,7S)-7-hydroxy-3-(5-methylcytosin-1-YL)-2,5-dioxabicyclo[2.2.1]hept-1-YL]methyl dihydrogen phosphate LCC 3000000046C
[(1R,3R,4R,7S)-7-hydroxy-3-(adenin-9-YL)-2,5-dioxabicyclo[2.2.1]hept-1-YL]methyl dihydrogen phosphate LCA 3000000045A
[(1R,3R,4R,7S)-7-hydroxy-3-(thymin-1-YL)-2,5-dioxabicyclo[2.2.1]hept-1-YL]methyl dihydrogen phosphate TLN 3000000064U
[(1R,3R,4R,7S)-7hydroxy-3-(guanin-9-YL)-2,5-dioxabicyclo[2.2.1]hept-1-YL]methyl dihydrogen phosphate LCG 3000000047G
[(2R,3S,5R)-5-(6-amino-8-deuteriopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]phosphonicacid AD2 3000000551A
[(2R,3S,5R)-5-(6-amino-8-deuteriopurin-9-yl)-3-hydroxyoxolan-2-yl]phosphonicacid 2HA 1000000551U
[(2R,3S,5S)-3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-N-(2-methoxyethyl)phosphonamidicacid MU2 40000025551U
[(2R,3S,5S)-3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-N-propylphosphonamidicacid MU3 40000035551U
[(2R,3S,5S)-3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-morpholin-4-ylphosphinicacid MU1 4000015553G
[(2R,3S,5S)-3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methyldihydrogenphosphate P1T 4000005553U
[(2R,3S,5S)-5-(4-amino-2-oxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methyl dihydrogen phosphate D2C 1000000551G
[(2S,3S,5R)-3-amino-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methyl dihydrogen phosphate G38 1000000551G
[(2S,3S,5R)-3-amino-5-(5-methyl-2,4-dioxo-pyrimidin-1-yl)oxolan-2-yl]methyl dihydrogen phosphate NYM 1000001551U
[(2S,3S,5R)-3-amino-5-(6-aminopurin-9-yl)oxolan-2-yl]methyl dihydrogen phosphate" A43 1000000551A
[(2S,5R)-5-(2-amino-8-deuterio-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methylphosphonicacid 2HG 1000000551G
[(2~{R},3~{R},4~{R},5~{R})-5-(4-acetamido-2-oxidanylidene-pyrimidin-1-yl)-4-methoxy-3-oxidanyl-oxolan-2-yl]methyl dihydrogen phosphate pac4Cm 042551C
[(2~{R},3~{S},4~{R},5~{R})-5-(2-azanyl-6-diazanyl-purin-9-yl)-3,4-bis(oxidanyl)oxolan-2-yl]methoxyphosphinic acid O2Z 2000000054X
[(2~{R},3~{S},4~{R},5~{R})-5-[4-(dimethylamino)-2-oxidanylidene-pyrimidin-1-yl]-3,4-bis(oxidanyl)oxolan-2-yl]methyl dihydrogen phosphate pm4,4C 44551C
[(2~{R},3~{S},4~{R},5~{S})-5-[1-methyl-2,4-bis(oxidanylidene)pyrimidin-5-yl]-3,4-bis(oxidanyl)oxolan-2-yl]methyl dihydrogen phosphate B8H 2000000025X
[(6-amino-9H-purin-9-YL)-[5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole]-4'YL]methyl dihydrogen phosphate ANZ 3000000023A
adenosine-5'-monophosphate pA A 551A
adenosine-5'-thio-monophosphate SRA 5000000062A
agmatidine C+ ¿ 20C
agmatidine-5'-monophosphate pC+ 20551C
alpha-dimethylmonophosphate 5' cap mmpN 2551N
alpha-methylmonophosphate 5' cap mpN 1551N
archaeosine-5'-monophosphate pG+ ( 103551G
cyclic N6-threonylcarbamoyladenosine ct6A e 69A
cyclic N6-threonylcarbamoyladenosine-5'-monophosphate pct6A 69551A
cytidine-5'-monophosphate pC C 551C
epoxyqueuosine-5'-monophosphate poQ 102551G
galactosyl-queuosine-5'-monophosphate pgalQ 9 104551G
gamma-methyltriphosphate 5' cap mpppN § 1553N
glutamyl-queuosine gluQ 105G
glutamyl-queuosine-5'-monophosphate pgluQ 105551G
guanosine-5'-monophosphate pG G 551G
guanosine-5'-thio-monophosphate GS 4000000041G
hydroxy-N6-threonylcarbamoyladenosine ht6A « 2165A
hydroxy-N6-threonylcarbamoyladenosine-5'-monophosphate pht6A 2165551A
hydroxywybutosine-5'-monophosphate pOHyW 34830551G
inosine-5'-monophosphate pI I 9551A
isocytidine-5'-monophosphate IC 2000000042C
isoguanosine-5'-monophosphate IG 2000000043A
isowyosine imG2 42G
isowyosine-5'-monophosphate pimG2 42551G
mannosyl-queuosine manQ 8 106G
mannosyl-queuosine-5'-monophosphate pmanQ 8 106551G
methylated undermodified hydroxywybutosine OHyWy y 3480G
methylated undermodified hydroxywybutosine-5'-monophosphate pOHyWy 3480551G
methylwyosine mimG 342G
methylwyosine-5'-monophosphate pmimG 342551G
peroxywybutosine-5'-monophosphate po2yW Ŵ 34832551G
pseudouridine-5'-monophosphate pY P 9551U
purine riboside-5'-monophosphate P5P 2000000056X
puromycin-5'-monophosphate PPU 3000000057A
queuosine-5'-monophospate pQ Q 10551G
undermodified hydroxywybutosine OHyWx š 3470G
undermodified hydroxywybutosine-5'-monophospate pOHyWx 3470551G
unknown 5' monophosphate ribonucleotide pN m 551N
unknown modification xX @ X
unknown modified adenosine xA H ?A
unknown modified cytidine xC < ?C
unknown modified guanosine xG ; ?G
unknown modified uridine xU N ?U
unknown nucleoside 2'-O-methylated Xm Î 0X
uridine 5'-monothiophosphate U37 5000000065U
uridine 5-oxyacetic acid cmo5U V 502U
uridine 5-oxyacetic acid methyl ester mcmo5U υ 503U
uridine 5-oxyacetic acid methyl ester-5'-monophospate pmcmo5U 503551U
uridine-5'-monophosphate pU U 551U
uridine-5'-monophosphate-2',3'-cyclic phosphate pU2'3'cp 3377551U
wybutosine-5'-monophosphate pyW Y 3483551G
wybutosine[C15(S)]-5'-monophosphate pyyW 34831551G
wyosine imG 34G
wyosine-5'-monophospate pimG 34551G

Proteins

Name Acronym Synonym Enzyme Type
Ribosomal protein L7Ae 15.5kD None None
Double-stranded RNA-specific adenosine deaminase ADAR ADAR1 deaminase
adenosine deaminase, tRNA specific 2 ADAT2 dJ20N2.1, TAD2 deaminase
Probable inactive tRNA-specific adenosine deaminase-like protein 3 ADAT3 TAD3 deaminase
Single-stranded DNA cytosine deaminase AICDA AID deaminase
alkB homolog 3, alpha-ketoglutarate dependent dioxygenase ALKBH3 DEPC-1 None
alkB homolog 4, lysine demethylase ALKBH4 FLJ20013 None
RNA demethylase ALKBH5 ALKBH5 ABH5, OFOXD1 demethylase
Alkylated DNA repair protein alkB homolog 8 ALKBH8 ABH8 methyltransferase, hydroxylase
apolipoprotein B mRNA editing enzyme catalytic subunit 1 APOBEC1 BEDP,CDAR1,APOBEC-1,HEPR None
U-editing enzyme APOBEC-2 APOBEC2 None deaminase
apolipoprotein B mRNA editing enzyme catalytic subunit 3A APOBEC3A ARP3,PHRBN None
DNA dC->dU-editing enzyme APOBEC-3B APOBEC3B None deaminase
DNA dC->dU-editing enzyme APOBEC-3C APOBEC3C None deaminase
DNA dC->dU-editing enzyme APOBEC-3D APOBEC3D None deaminase
DNA dC->dU-editing enzyme APOBEC-3F APOBEC3F None deaminase
DNA dC->dU-editing enzyme APOBEC-3G APOBEC3G None deaminase
DNA dC->dU-editing enzyme APOBEC-3H APOBEC3H None deaminase
Putative C->U-editing enzyme APOBEC-4 APOBEC4 None deaminase
RNA cap guanine-N7 methyltransferase Abd1 MceS methyltransferase
glutamine:preQ0-tRNA amidinotransferase or Archaeosine Synthase ArcS Archaeosine synthase, Glutamine:preQ0-tRNA amidinotransferase amidinotransferase
rRNA adenine N-7-methyltransferase ArmA 16S rRNA (guanine(1405)-N(7))-methyltransferase methyltransferase
rRNA guanine N-1-methyltransferase AviRa avilamycin resistance 23S rRNA methyltransferase methyltransferase
rRNA (uridine-2'-O-)-methyltransferase AviRb avilamycin resistance 23S rRNA methyltransferase methyltransferase
RNA 5'-monophosphate methyltransferase BCDIN3D None methyltransferase
S-adenosyl-L-methionine-dependent methyltransferase Bmt2 YBR141C methyltransferase
25S rRNA (uridine(2634)-N(3))-methyltransferase Bmt5 None methyltransferase
25S rRNA (uridine(2843)-N(3))-methyltransferase Bmt6 YLR063W methyltransferase
tRNA-specific cytidine deaminase CDAT8 MK0935 deaminase
CDK5 regulatory subunit associated protein 1 like 1/Threonylcarbamoyladenosine tRNA methylthiotransferase CDKAL1 FLJ20342 threonylcarbamoyladenosine synthetase
Chloroplast MraW-Like CMAL None methyltransferase
Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 CMTR1 hMTr1, FTSJD2, KIAA0082 methyltransferase
Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 2 CMTr2 hMTr2, FTSJD1, FLJ11171 methyltransferase
cytosolic thiouridylase subunit 1 - Cytoplasmic tRNA 2-thiolation protein 1 CTU1 MGC17332, NCS6 thiolase
H/ACA ribonucleoprotein complex subunit CBF5 Cbf5 dyskerine pseudouridine synthase
mRNA-capping enzyme subunit alpha Ceg1 GTase, Mce1 guanylyltransferase
RNA triphosphatase Cet1 Cet1 Polynucleotide 5'-triphosphatase, mRNA 5'-triphosphatase, Tpase triphosphatase/hydrolase
Ribosomal RNA large subunit methyltransferase Cfr Cfr pSCFS1 methyltransferase
Regulatory protein Cgi121 Cgi121 MJ0187 pseudouridine synthase
EKC/KEOPS complex subunit CGI121 Cgi121 YML036w pseudouridine synthase
tRNA (uridine-5-oxyacetic acid methyl ester)(34) synthase CmoA YecO methyltransferase
Carboxy-S-adenosyl-L-methionine synthase CmoA YecO methyltransferase
tRNA 5-methoxyuridine(34) synthase CmoB YecP carboxymethyltransferase
Ribosomal RNA small subunit methyltransferase, mitochondrial DIM1B 18S mitochondrial rRNA (adenine(1914)-N(6)/adenine(1915)-N(6))-dimethyltransferase, Adenosine dimethyl transferase 1B, Dimethyladenosine transferase 1B methyltransferase
dimethyladenosine transferase DIMT1L DIMT1 methyltransferase
H/ACA ribonucleoprotein complex subunit DKC1 DKC1 NOLA4 None
Decapping and exoribonuclease protein DXO DeNADding enzyme DXO hydrolase
RNA decapping complex subunit 2 Dcp2 None hydrolase
Scavenger mRNA-decapping enzyme DcpS DcpS DCS-1, Hint-related 7meGMP-directed hydrolase, HINT5 hydrolase
DNA (cytosine-5)-methyltransferase DnmA DNA -methyltransferase methyltransferase
tRNA (cytosine(38)-C(5))-methyltransferase Dnmt2 GSU0227 methyltransferase
tRNA-dihydrouridine(20) synthase [NAD(P)+] Dus2 Smm1p dihydrouridine synthase
Elongator complex protein 1 ELP1 IKAP, TOT1, IKI3 None
elongator acetyltransferase complex subunit - Elongator complex protein 33 ELP3 FLJ10422 KAT9 acetyltransferase
Ribosomal RNA small subunit methyltransferase NEP1 EMG1 None methyltransferase
rRNA cytydine C-5-methyltransferase EfmM kanamycin and tobramycin resistance 16S rRNA methyltransferase methyltransferase
Elongator complex protein 1 Elp1 IKI3, TOT1 None
Elongator complex protein 2 Elp2 TOT2 None
Elongator complex protein 3 Elp3 HPA1, TOT3 None
Elongator complex protein 4 Elp4 HAP1, TOT7 None
Elongator complex protein 5 Elp5 ELP5, HAP2, TOT5, IKI1 None
Elongator complex protein 6 Elp6 HAP3, TOT6 None
rRNA adenine N-6-methyltransferase ErmAM macrolide-lincosamide-streptogramin B resistance 23S rRNA methyltransferase methyltransferase
rRNA adenine N-6-methyltransferase ErmBC None methyltransferase
rRNA adenine N-6-methyltransferase ErmC' macrolide-lincosamide-streptogramin B resistance 23S rRNA methyltransferase methyltransferase
rRNA adenine N-6-methyltransferase ErmE Erythromycin resistance protein, Macrolide-lincosamide-streptogramin B resistance protein methyltransferase
rRNA 2′-O-methyltransferase fibrillarin FBL FIB1, FLRN, fibrillarin methyltransferase
Faustovirus RNA capping enzyme FCE None None
U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase FIO1 None methyltransferase
Putative tRNA (cytidine(32)/guanosine(34)-2'-O)-methyltransferase FTSJ1 JM23 CDLIV SPB1 TRM7 TRMT7 methyltransferase
Fibrillarin-like rRNA/tRNA 2′-O-methyltransferase FlpA aFib, Fibrillarin-like methyltransferase
Fibrillarin-like rRNA/tRNA 2′-O-methyltransferase FlpA aFib, MJ0697, Fibrillarin-like methyltransferase
Fibrillarin-like rRNA/tRNA 2′-O-methyltransferase FlpA aFib, PH0052, Fibrillarin-like methyltransferase
Fibrillarin-like rRNA/tRNA 2′-O-methyltransferase FlpA aFib, Fibrillarin-like, PF0059 methyltransferase
Fibrillarin-like rRNA/tRNA 2′-O-methyltransferase FlpA aFib, Fibrillarin-like, AF_2087 methyltransferase
EKC/KEOPS complex subunit GON7 GON7 14q32.12 None
tRNA modification GTPase GTPBP3, mitochondrial GTPBP3 MTGP1 GTPase
H/ACA ribonucleoprotein complex subunit 1 Gar1 None None
tRNA glutamyl-Q(34) synthetase GluQRS YadB aminoacyl-tRNA synthetase-like
E3 ubiquitin-protein ligase HAKAI homolog HAKAI None ligase
RNA-capping enzyme HCAP1 HCE, mRNA 5'-triphosphatase, GTP--RNA guanylyltransferase triphosphatase, guanylyltransferase
3-hydroxyacyl-CoA dehydrogenase type-2 HSD17B10 SDR5C1, ERAB, HADH2, MRPP2, SCHAD, XH98G2 None
RNA cap guanine-N7 methyltransferase Hcm1 mRNA cap methyltransferase, RG7MT1, hCMT1, hMet methyltransferase
Small RNA 2′-O-methyltransferase Hen1 CORYMBOSA 2, HUA ENHANCER 1 methyltransferase
Methyltransferase type 12 Hen1 Cthe_2767 methyltransferase
Small RNA 2'-O-methyltransferase Henmt1 None None
Iron-sulfur cluster assembly enzyme ISCU, mitochondrial ISCU ISU2, hnifU, IscU None
N6-adenosine-methyltransferase IME4 Ime4 Mrm(m6A), Spo8 methyltransferase
Cysteine desulfurase IscS subfamily IscS NuvC cysteine desulfurase
Probable bifunctional tRNA threonylcarbamoyladenosine biosynthesis protein Kae1/Bud32 MJ1130 endopeptidase/kinase predicted
rRNA adenine N-1-methyltransferase KamB aminoglycoside-resistance 16S rRNA methyltransferase methyltransferase
Diphthamide biosynthesis protein 3 Kti11 DPH3 None
Casein kinase I homolog HRR25 Kti14 HRR25 None
50S ribosomal protein L7Ae L7Ae rpl7ae, PF1367 None
50S ribosomal protein L7Ae L7Ae rpl7ae, SSO0091 None
50S ribosomal protein L7Ae L7Ae rpl7ae, MJ1203 None
50S ribosomal protein L7Ae L7Ae rpl7ae, AF_0764 None
EKC/KEOPS complex subunit LAGE3 LAGE3 ITBA2 CVG5 DXS9951E DXS9879E ESO3 Pcc1 None
La ribonucleoprotein 7, transcriptional regulator LARP7 HDCMA18P,PIP7S,DKFZP564K112 None
RNA cap gamma-methyltransferase MEPCE 7SK snRNA methylphosphate capping enzyme (MePCE), Bicoid-interacting protein 3 homolog methyltransferase
tRNA (guanine-N(7)-)-methyltransferase METTL1 TRMB methyltransferase
N6-adenosine-methyltransferase non-catalytic subunit METTL14 KIAA1627 methyltransferase
12S rRNA N4-methylcytidine (m4C) methyltransferase METTL15 METT5D1 methyltransferase
U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase METTL16 None methyltransferase
Methyltransferase-like protein 2A METTL2 METTL2A methyltransferase
tRNA N(3)-methylcytidine methyltransferase METTL2B None methyltransferase
N6-adenosine-methyltransferase 70 kDa subunit METTL3 MTA70 methyltransferase
N(6)-adenine-specific methyltransferase METTL4 None methyltransferase
rRNA N6-adenosine-methyltransferase METTL5 DC3, HSPC133 methyltransferase
rRNA N6-adenosine-methyltransferase Mettl5 METTL5 None methyltiotransferase
methyltransferase like 6 - Methyltransferase-like protein 6 METTL6 MGC24132 methylthiotransferase
mitochondrial tRNA N(3)-methylcytidine methyltransferase, mRNA N(3)-methylcytidine methyltransferase METTL8 None methyltransferase
molybdenum cofactor synthesis 3 MOCS3 UBA4, dJ914P20.3 adenylyltransferase, sulfurtransferase
rRNA methyltransferase 1, mitochondrial MRM1 None methyltransferase
rRNA methyltransferase 2, mitochondrial MRM2 FTSJ2, FJH1 methyltransferase
rRNA methyltransferase 3, mitochondrial MRM3 RNMTL1 methyltransferase
N6-adenosine-methyltransferase MT-A70-like MTA None methyltransferase
N6-adenosine-methyltransferase MT-A70-like MTA70 None methyltransferase
N6-adenosine-methyltransferase non-catalytic subunit MTB MTB Methyltransferase-like protein 1, Protein EMBRYO DEFECTIVE 1691, Protein METTL14 homolog None
Protein MUM2 MUM2 None None
tRNA-queuine glycosyltransferase Man/Gal-Q-transferase hexose transferase
tRNA (adenosine(37)-N6)-dimethylallyltransferase MiaA TrpX dimethylallyltransferase
tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase MiaB YleA methylthiotransferase
(Dimethylallyl)adenosine tRNA methylthiotransferase MiaB MiaB YmcB, BSU17010 methylthiotransferase predicted
(Dimethylallyl)adenosine tRNA methylthiotransferase MiaB MiaB TM0653 methylthiotransferase predicted
tRNA 2-methylthio-N6-isopentenyl adenosine(37) hydroxylase MiaE None hydroxylase
tRNA 2-thiouridine(34) synthase MnmA TrmU, AsuE, YcfB thiolase
tRNA-specific 2-thiouridylase mnmA MnmA TrmU thiolase
tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase / FAD-dependent cmnm(5)s(2)U34 oxidoreductase MnmCD TrmC, MnmC methyltransferase/oxidoreductase
tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein MnmCD MnmCD methyltransferase/oxidoreductase
MnmD tRNA methyltransferase MnmD MnmC2 methyltransferase
tRNA uridine(34) 5-carboxymethylaminomethyl synthesis GTPase MnmE ThdF, TrmE GTPase
tRNA modification GTPase MnmE MnmE ThdF, TrmE GTPase
tRNA modification GTPase MnmE MnmE TrmE GTPase
tRNA modification GTPase MnmE MnmE TrmE GTPase
tRNA uridine(34) 5-carboxymethylaminomethyl synthesis enzyme MnmG GidA, TrmF other
tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG MnmG GidA other
tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG MnmG GidA other
tRNA 2-selenouridine(34) synthase MnmH SelU, YbbB selenotransferase/geranyltransferase
tRNA (mnm(5)s(2)U34)-methyltransferase MnmM None methyltransferase
tRNA dimethylallyltransferase, mitochondrial Mod5 IPTase, IPPT dimethylallyltransferase
tRNA dimethylallyltransferase 2 Mod5 IPT2, At2g27760 dimethylallyltransferase predicted
tRNA dimethylallyltransferase, mitochondrial Mod5 TRIT1, IPT dimethylallyltransferase
rRNA methyltransferase, mitochondrial Mrm1 Pet56 methyltransferase
Ribosomal RNA methyltransferase MRM2, mitochondrial Mrm2 None methyltransferase
tRNA modification GTPase MSS1 Mss1 Pet53 GTPase
Threonylcarbamoyladenosine tRNA methylthiotransferase MtaB MtaB YqeV methyltiotransferase
Threonylcarbamoyladenosine tRNA methylthiotransferase MtaB tRNA-t(6)A37 methylthiotransferase, Cdkal1 methylthiotransferase
Mitochondrial translation optimization protein 1 Mto1 Ips1 other
Mitochondrial tRNA-specific 2-thiouridylase 1 Mtu1 Mto2, SLM3 sulfurtransferase
Cysteine desulfurase, mitochondrial NFS1 NifS, IscS desulfurase
nucleophosmin 1 NPM1 B23,NPM None
Nosiheptide Resistance Methyltransferase NRM Nosiheptide Resistance Methyltransferase methylthiotransferase
RNA-directed RNA polymerase NS4 NS5 None methyltransferase
RNA-directed RNA polymerase NS5 NS5 None methyltransferase
NOP2/Sun RNA methyltransferase 2 NSUN2 FLJ20303,TRM4,Misu None
tRNA (cytosine(34)-C(5))-methyltransferase, mitochondrial NSUN3 NOL1/NOP2/Sun domain family member 3 methyltransferase
" tRNA (cytosine(34)-C(5))-methyltransferase, mitochondrial" NSUN3 None methyltransferase
5-methylcytosine rRNA methyltransferase NSUN4, mitochondrial NSUN4 NOL1/NOP2/Sun domain family member 4 methyltransferase
28S rRNA (cytosine-C(5))-methyltransferase NSUN5 None methyltransferase
tRNA (cytosine-5-)-methyltransferase NSUN6 NSUN6 None methyltransferase
U8 snoRNA-decapping enzyme NUDT16 hydrolase
Cytoplasmic tRNA 2-thiolation protein 2 Ncs2 CTU2, TUC2 thiolase
Cytoplasmic tRNA 2-thiolation protein 1 Ncs6 Ctu1, Tuc1 thiolase
Ribosomal RNA small subunit methyltransferase NEP1 Nep1 Emg1 methyltransferase
Ribosomal RNA small subunit methyltransferase Nep1 Nep1 MJ0557 methyltransferase
Cysteine desulfurase, mitochondrial Nfs1 Spl1 cysteine desulfurase
H/ACA ribonucleoprotein complex subunit 2 Nhp2 15.5kD None
rRNA 2′-O-methyltransferase fibrillarin Nop1 Fibrillarin, Lot3p methyltransferase
H/ACA ribonucleoprotein complex subunit 3 Nop10 None
Archaeal nucleolar protein homolog Nop56/58 Nop5, PF0060 None
Pre mRNA splicing protein Nop56/58 Nop5, SSO0939 None
Archaeal nucleolar protein homolog Nop56/58 Nop5, AF_2088 None
rRNA adenine N-1-methyltransferase NpmA aminoglycoside-resistance 16S rRNA methyltransferase methyltransferase
rRNA (adenosine-2'-O-)-methyltransferase Nsr Nosiheptide-resistance methyltransferase methyltransferase
28S rRNA (cytosine-C(5))-methyltransferase Nsun5 None methyltransferase
28S rRNA (cytosine-C(5))-methyltransferase Nsun5 None methyltiotransferase
O-sialoglycoprotein endopeptidase - Probable tRNA N6-adenosine threonylcarbamoyltransferase OSGEP PRSMG1 GCPL1 OSGEP1 KAE1 TCS3 endopeptidase
(2'-O-methyladenosine-N(6)-)-methyltransferase PCIF1 C20orf67, CAPAM, PPP1R121 methyltransferase
Ribosomal RNA small subunit methyltransferase, chloroplastic PFC1 PALEFACE 1, Dimethyladenosine transferase 1C methyltransferase
Pseudouridylate synthase 7 homolog PUS7 FLJ20485 pseudouridine synthase
Pseudouridylate synthase PUS7L PUS7L Pseudouridylate synthase 7 homolog-like protein isomerase
KEOPS complex subunit Pcc1 Pcc1 PF2011 methyltransferase
Polarized growth chromatin-associated controller 1 Pcc1 YKR095W-A methyltransferase
Protein O-MannosylTransferase Pmt1 YDL095W methyltransferase
tRNA pseudouridine synthase 1, mitochondrial Pus1 None pseudouridine synthase
tRNA pseudouridine synthase 3 Pus3 Deg1p, Hrm3 pseudouridine synthase
Multisubstrate pseudouridine synthase 7 Pus7 pseudouridine synthase
tRNA pseudouridine synthase 9, mitochondrial Pus9 pseudouridine synthase
t(6)A37 threonylcarbamoyladenosine biosynthesis protein QRI7 Qri7 OSGEPL, YDL104C threonylcarbamoyltransferase
tRNA preQ1(34) S-adenosylmethionine ribosyltransferase-isomerase QueA None isomerase
NADPH-dependent 7-cyano-7-deazaguanine reductase QueF ykvM, BSU13750 oxidoreductase
RNA methyltransferase-like protein 1 RNMTL1 MRM3 methyltransferase
Mitochondrial mRNA pseudouridine synthase RPUSD3 None pseudouridine synthase
RNA pseudouridylate synthase domain-containing protein 4 RPUSD4 None pseudouridine synthase
RNA pseudouridylate synthase domain-containing protein 1 RUSD1 RPUSD1 isomerase
Ribosomal RNA Cytosine Methyltransferase 1 Rcm1 Ynl022c methyltransferase
Ribosomal RNA large subunit methyltransferase A RlmA(I) RrmA, YebH methyltransferase
23S rRNA (guanine(748)-N(1))-methyltransferase RlmA(II) TlrB methyltransferase
Ribosomal RNA large subunit methyltransferase B RlmB YjfH, JW4138 methyltransferase
Ribosomal RNA large subunit methyltransferase C RlmC YbgF, RumB methyltransferase
23S rRNA (uracil(747)-C(5))-methyltransferase RlmC PYRAB11450 methyltransferase
23S rRNA (uracil-C(5))-methyltransferase RlmCD RlmCD YefA methyltransferase
23S rRNA (Uracil-C(5))-methyltransferase RlmCD RlmCD None methyltransferase
Ribosomal RNA large subunit methyltransferase D RlmD RumA, YgcA methyltransferase
Ribosomal RNA large subunit methyltransferase E RlmE RrmJ, Ftsj, MrsF, JW3146 methyltransferase
Ribosomal RNA large subunit methyltransferase F RlmF YbiN, JW5107 methyltransferase
23S rRNA (uracil(1939)-C(5))-methyltransferase RlmFO RlmFO Mcap0476 methyltransferase
Ribosomal RNA large subunit methyltransferase G RlmG YgjO methyltransferase
Ribosomal RNA large subunit methyltransferase H RlmH YbeA methyltransferase
Ribosomal RNA large subunit methyltransferase I RlmI yccW, JW5898 methyltransferase
putative RNA 5-methyluridine methyltransferase RlmI TTHA1280 methyltransferase predicted
Ribosomal RNA large subunit methyltransferase J RlmJ yhiR methyltransferase
Ribosomal RNA large subunit methyltransferase KL RlmKL YcbY methyltransferase
Ribosomal RNA large subunit methyltransferase M RlmM YgdE methyltransferase
tRNA (adenosine(37)-C2)-methyltransferase / Ribosomal RNA large subunit methyltransferase N RlmN TrmG, YfgB methyltransferase
" tRNA (adenosine(37)-C2)-methyltransferase / Ribosomal RNA large subunit methyltransferase N" RlmN None methyltransferase
Ribosomal RNA large subunit methyltransferase O RlmO TTHA1493 methyltransferase
23S rRNA (guanosine(2553)-2'-O)-methyltransferase RlmP RlmP ysgA methylthiotransferase
tRNA pseudouridine(32) synthase / Ribosomal large subunit pseudouridine synthase A RluA YabO pseudouridine synthase
Ribosomal large subunit pseudouridine synthase B RluB YciL pseudouridine synthase
Ribosomal large subunit pseudouridine synthase B RluB None pseudouridine synthase
Ribosomal large subunit pseudouridine synthase C RluC YceC pseudouridine synthase
Ribosomal large subunit pseudouridine synthase D RluD YfiI, SfhB pseudouridine synthase
Ribosomal large subunit pseudouridine synthase E RluE YmfC pseudouridine synthase
Ribosomal large subunit pseudouridine synthase F RluF YjbC pseudouridine synthase
16S rRNA methyltransferase RmtB RmtB None methyltransferase
16S rRNA (guanine(1405)-N(7))-methyltransferase RmtC 16S rRNA m7G1405 methyltransferase methyltransferase
Ribosomal RNA cytidine Acetyltransferase 1 Rra1 KRE33 acetyltransferase
Ribosomal RNA-processing protein 8 Rrp8 YDR083W methyltransferase
Probable S-adenosyl-L-methionine-dependent RNA methyltransferase RSM22, mitochondrial Rsm22 None methyltransferase
Ribosomal RNA small subunit methyltransferase A RsmA KsgA, JW0050 methyltransferase
Dimethyladenosine transferase RsmA Dim1 methyltransferase
Ribosomal RNA small subunit methyltransferase A RsmA KsgA, aq_1816 methyltransferase predicted
Ribosomal RNA small subunit methyltransferase A RsmA None methyltransferase
Dimethyladenosine transferase 1, mitochondrial RsmA DIMT1, h-mtTFB1 methyltransferase
Ribosomal RNA small subunit methyltransferase A RsmA KsgA, Dim1, MJ1029 methyltransferase
Ribosomal RNA small subunit methyltransferase A RsmA KsgA, TTHA0083 methyltransferase
RNA small subunit Methyltransferase A RsmA ksgA methyltransferase predicted
Ribosomal RNA small subunit methyltransferase B RsmB Fmu/Fmv, RrmB, Sun, YhdB methyltransferase
RNA small subunit Methyltransferase B RsmB TTHA0851 methyltransferase predicted
Ribosomal RNA small subunit methyltransferase C RsmC YjjT methyltransferase
Probable ribosomal RNA small subunit methyltransferase RsmC TTHA0533 methyltransferase predicted
Ribosomal RNA small subunit methyltransferase D RsmD YhhF methyltransferase
Ribosomal RNA small subunit methyltransferase D RsmD Rv2966c methyltransferase
Ribosomal RNA small subunit methyltransferase E RsmE YggJ methyltransferase
Ribosomal RNA small subunit methyltransferase F RsmF YebU, JW5301 methyltransferase
Ribosomal RNA small subunit methyltransferase F RsmF TTHA1387 methyltransferase
Ribosomal RNA small subunit methyltransferase G RsmG GidB, JW3718 methyltransferase
Ribosomal RNA small subunit methyltransferase G RsmG gidB methyltransferase
Ribosomal RNA small subunit methyltransferase G RsmG GidB, TTHA1971 methyltransferase
Ribosomal RNA small subunit methyltransferase H RsmH mraW methyltransferase
Ribosomal RNA small subunit methyltransferase I RsmI yraL methyltransferase
Ribosomal RNA small subunit methyltransferase J RsmJ YhiQ methyltransferase
Ribosomal small subunit pseudouridine synthase A RsuA YejD pseudouridine synthase
SUPPRESSOR OF CSB3 9 SCS9 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein methyltransferase
rRNA adenine N-7-methyltransferase Sgm Sisomicin-gentamicin resistance methylase methyltransferase
AdoMet-dependent rRNA methyltransferase SPB1 Spb1 YCL54W, YCL431 methyltransferase
tRNA threonylcarbamoyladenosine biosynthesis protein SUA5 Sua5 None threonylcarbamoyladenosine synthetase
Threonylcarbamoyl-AMP synthase Sua5 YrdC, STK_15260 threonylcarbamoyladenosine synthetase predicted
treacle ribosome biogenesis factor 1 TCOF1 treacle,TCS None
Dimethyladenosine transferase 1, mitochondrial TFB1M h-mtTFB, CGI75 methyltransferase
THUMP domain containing 1 THUMPD1 FLJ20274, Tan1 None
TLE family member 5, transcriptional modulator TLE5 GRG5 None
tRNA (cytosine(38)-C(5))-methyltransferase TRDMT1 Dnmt2 methyltransferase
tRNA methyltransferase 112 homolog TRM112 TRMT112 methyltransferase
NOL1/NOP2/sun family protein / antitermination NusB domain-containing protein TRM4E None methyltransferase
tRNA (guanine(37)-N1)-methyltransferase TRM5 KIAA1393, TRMT5 methyltransferase
tRNA-methyltransferase O TRMO None methyltransferase
tRNA methyltransferase 1 TRMT1 None methyltransferase
tRNA methyltransferase 10 homolog A TRMT10A RG9MTD2 methyltransferase
tRNA methyltransferase 10 homolog B TRMT10B RG9MTD3 methyltransferase
tRNA methyltransferase 10 C, mitochondrial TRMT10C MRPP1, RG9MTD1 methyltransferase
tRNA:m(4)X modification enzyme TRM13 homolog TRMT13 None methyltransferase
tRNA (uracil-5-)-methyltransferase homolog A TRMT2A HpaII tiny fragments locus 9c protein methyltransferase
tRNA (uracil(54)-C(5))-methyltransferase homolog TRMT2B TRM2 homolog methyltransferase
tRNA methyltransferase 9 TRMT9B fid methyltransferase
18S rRNA aminocarboxypropyltransferase TSR3 None methyltransferase
tRNA wybutosine-synthesizing protein 2 TYW2 Trm12, YMA5 Alpha-amino-alpha-carboxypropyltransferase
tRNA wybutosine-synthesizing protein 2 TYW2 TRMT12 Alpha-amino-alpha-carboxypropyltransferase
Leucine carboxyl methyltransferase 2 TYW4 PPM2, LCMT2 methyltransferase, carboxymethyltransferase
tRNA yW-synthesizing enzyme 5 TYW5 C2orf60 hydroxylase
tRNA-specific adenosine deaminase 1 Tad1 ADAT1, YGL243W deaminase
tRNA-specific adenosine deaminase 1 Tad1 hADAT1 deaminase
tRNA-specific adenosine deaminase subunit TAD2 Tad2 ADAT2 deaminase
tRNA-specific adenosine deaminase 2 Tad2 ADAT2 deaminase
tRNA-specific adenosine deaminase subunit TAD3 Tad3 ADAT3 deaminase
tRNA-specific adenosine deaminase 3 Tad3 ADAT3 deaminase
tRNA-specific adenosine deaminase TadA YfhC deaminase
tRNA-specific adenosine deaminase, chloroplastic TadA AtTadA deaminase
tRNA-specific adenosine deaminase TadA aq_903 deaminase predicted
tRNA-specific adenosine deaminase TadA SAV0558 deaminase predicted
tRNA wyosine derivatives biosynthesis protein Taw1 Taw1 MjTYW1 oxidoreductase
S-adenosyl-L-methionine-dependent tRNA 4-demethylwyosine synthase Taw1 Tyw1 oxidoreductase
tRNA (guanine(37)-N1)-methyltransferase Trm5a/Taw22 Taw22 Trm5a methyltransferase
tRNA threonylcarbamoyladenosine dehydratase A TcdA YgdL, CsdL dehydratase
Trimethylguanosine synthase 1 Tgs1 P2573 methyltransferase
trimethylguanosinesynthase 1 Tgs1 PRIP-interacting protein with methyltransferase motif (PIMT) methyltransferase
RNA cap guanine-N2 methyltransferase Tgs2 None methyltransferase
Queuine tRNA-ribosyltransferase Tgt ZMO0363 transglycosylase
tRNA(Ile2) 2-agmatinylcytidine synthase TiaS TiaS AF_2259 agmatidine synthase
tRNA(Ile2) 2-agmatinylcytidine synthase TiaS TiaS PF1855 agmatidine synthase
tRNA lysidine(34) synthetase TilS MesJ, YaeN lysidine synthase
tRNA cytidine(34) acetyltransferase TmcA YpfI, JW2459 acetyltransferase
tRNA (guanine(10)-N2)-dimethyltransferase Trm-G10 (Pab)Trm-G10, PYRAB16240 methyltransferase
tRNA (guanine(26)-N(2))-dimethyltransferase, mitochondrial Trm1 None methyltransferase
tRNA (guanine(26)-N(2)/guanine(27)-N(2))-dimethyltransferase Trm1 aq_841 methyltransferase
tRNA (guanine(26)-N(2))-dimethyltransferase Trm1 PH1829 methyltransferase
tRNA (guanine(26)-N(2))-dimethyltransferase Trm1 hTRM1p methyltransferase
tRNA (guanine-N(1)-)-methyltransferase Trm10 O0926 methyltransferase
tRNA (adenine(9)-N1)-methyltransferase Trm10 None methyltransferase
tRNA guanosine-2′-O-methyltransferase TRM11 Trm11 None methyltransferase
Multifunctional methyltransferase subunit TRM112 Trm112 None
tRNA-2′-O-methyltransferase TRM13 Trm13 None methyltransferase
140 kDa actin-binding protein Trm140 Abp140 methyltransferase
tRNA (uracil-5-)-methyltransferase Trm2 Nud1, Rnc1 methyltransferase
tRNA (guanosine(18)-2′-O)-methyltransferase Trm3 None methyltransferase
Multisite-specific tRNA:(cytosine-C(5))-methyltransferase Trm4 Ncl1p methyltransferase
tRNA (cytosine(48)-C(5))-methyltransferase Trm4 MJ0026 methyltransferase predicted
tRNA (cytosine(34)-C(5))-methyltransferase Trm4 hMisu, SAKI methyltransferase
tRNA (cytosine(49)-C(5))-methyltransferase Trm4 PYRAB06230 methyltransferase
tRNA (uridine-O(2)-)-methyltransferase Trm44 methyltransferase
Multisite-specific tRNA:(cytosine-C(5))-methyltransferase trm4a Trm4a Multisite-specific tRNA:(cytosine-C(5))-methyltransferase trm4a methyltransferase
Multisite-specific tRNA:(cytosine-C(5))-methyltransferase trm4b Trm4b tRNA (cytosine-5-)-methyltransferase trm4b methyltransferase
tRNA (guanine-N(1)-)-methyltransferase Trm5 None methyltransferase
tRNA (guanine(37)-N1)-methyltransferase Trm5b Trm5b MJ0883 methyltransferase
tRNA (guanine(37)-N1)-methyltransferase Trm5b Trm5b None methyltransferase
tRNA (adenine(58)-N(1))-methyltransferase non-catalytic subunit TRM6 Trm6 GCD10, TIF33 None
tRNA (adenine(58)-N(1))-methyltransferase catalytic subunit TRM61 Trm61 GCD14 methyltransferase
tRNA (cytidine(32)/guanosine(34)-2′-O)-methyltransferase Trm7 Ybr1, FtsJ methyltransferase
tRNA (guanine-N(7)-)-methyltransferase Trm8 None methyltransferase
tRNA (guanine-N(7)-)-methyltransferase subunit TRM82 Trm82 None None
tRNA (uracil-5-)-methyltransferase TRM9 Trm9 YM9571.04 methyltransferase
tRNA (uridine(54)-C5)-methyltransferase TrmA RumT methyltransferase
tRNA (guanine(46)-N7)-methyltransferase TrmB YggH methyltransferase
tRNA (guanine-N(7)-)-methyltransferase TrmB ytmQ methyltransferase
tRNA (guanine-N(7)-)-methyltransferase TrmB None methyltransferase
tRNA (guanosine(37)-N1)-methyltransferase TrmD JW2588 methyltransferase
Methylenetetrahydrofolate--tRNA-(uracil-54-)-methyltransferase TrmFO TrmFO Gid, YlyC methyltransferase
Methylenetetrahydrofolate-tRNA-(uracil-54-)-methyltransferase TrmFO TrmFO methyltransferase
Uncharacterized tRNA/rRNA methyltransferase YfiF TrmG YfiF methyltransferase predicted
tRNA (guanosine(18)-2′-O)-methyltransferase TrmH SpoU methyltransferase
tRNA (guanosine(18)-2′-O)-methyltransferase TrmH SpoU methyltransferase
tRNA (adenine(57)-N(1)/adenine(58)-N(1))-methyltransferase TrmI TrmI pimT-like methyltransferase
tRNA (adenine(58)-N(1))-methyltransferase TrmI TrmI TT_C0244 methyltransferase
tRNA (adenine(58)-N(1))-methyltransferase TrmI TrmI Rv2118c, MT2178 methyltransferase
tRNA (cytidine(32)/uridine(32)-2′-O)-methyltransferase TrmJ YfhQ, JW2516 methyltransferase
tRNA (cytidine(32)-2′-O)-methyltransferase TrmJ Saci_0621 methyltransferase
tRNA (adenine(22)-N(1))-methyltransferase TrmK None methyltransferase
tRNA (cytidine(34)-2′-O)-methyltransferase TrmL YibK methyltransferase
Probable dual-specificity RNA methyltransferase RlmN TrmL cspR methyltransferase
tRNA (adenosine(37)-N6)-methyltransferase TrmM YfiC, TrmN6 methyltransferase
tRNA (guanine(6)-N2)-methyltransferase TrmN Trm14, MJ0438 methyltransferase
tRNA (guanine(6)-N2)-methyltransferase TrmN Trm14 methyltransferase
tRNA-methyltransferase O TrmO TsaA, YaeB methyltransferase
tRNA mo5U methyltransferase TrmR yrrM, putative acyl-CoA O-methyltransferase methyltransferase
Mitochondrial tRNA-specific 2-thiouridylase 1 TrmU MTU1, TRMT1 sulfurtransferase
tRNA (uracil(54)-C(5))-methyltransferase TrmU54 PYRAB10780 methyltransferase
tRNA(pseudouridine54-N1)-methyltransferase TrmY HVO_1989 methyltransferase
tRNA(pseudouridine54-N1)-methyltransferase TrmY MJ1640 methyltransferase
Multifunctional methyltransferase subunit TRM112-like protein Trmt112 None None
tRNA (adenine(58)-N(1))-methyltransferase non-catalytic subunit TRM6 Trmt6 KIAA1153, TRM6 None
tRNA (adenine(58)-N(1))-methyltransferase catalytic subunit TRMT61A Trmt61A C14orf172, TRM61 methyltransferase
tRNA (adenine(58)-N(1))-methyltransferase, mitochondrial Trmt61B None methyltransferase
tRNA pseudouridine synthase B TruB TM_0856 pseudouridine synthase predicted
tRNA N6-threonylcarbamoyladenosine(37) synthesis protein TsaB YeaZ endopeptidase
tRNA threonylcarbamoyladenosine biosynthesis protein TsaB TsaB YeaZ endopeptidase predicted
tRNA N6-threonylcarbamoyladenosine(37) synthesis protein TsaC RimN, yrdC threonylcarbamoyladenosine synthetase
YrdC-like domain-containing protein TsaC smu.1377c threonylcarbamoyladenosine synthetase predicted
tRNA N6-threonylcarbamoyladenosine(37) synthesis protein TsaD YgjD threonylcarbamoyltransferase
tRNA N6-threonylcarbamoyladenosine(37) synthesis protein TsaE YjeE ATPase
rRNA (adenosine-2'-O-)-methyltransferase Tsr Thiostrepton Resistance 23S rRNA methyltransferase methyltransferase
Thiosulfate sulfurtransferase TUM1 Tum1 None thiosulfate sulfurtransferase
tRNA 2-thiouridine(34) synthase TusC yheM None
ubiquitin related modifier 1 URM1 MGC2668 None
Ubiquitin-related modifier 1 Urm1 None thiosulfate sulfurtransferase
vir like m6A methyltransferase associated VIRMA DKFZP434I116,fSAP121 None
18S rRNA (guanine-N(7))-methyltransferase WBSCR22 MERM1, BUD23 methyltransferase
tRNA (guanine-N(7)-)-methyltransferase subunit WDR4 WDR4 None None
Pre-mRNA-splicing regulator WTAP WTAP KIAA0105,MGC3925,Mum2 None
Y-box binding protein 1 YBX1 YB-1,YB1,DBPB,NSEP-1,MDR-NF1,BP-8,CSDB,CSDA2 None
YTH domain containing 2 YTHDC2 FLJ2194,FLJ10053,DKFZp564A186 None
YTH N6-methyladenosine RNA binding protein 1 YTHDF1 FLJ20391 None
YTH N6-methyladenosine RNA binding protein 2 YTHDF2 HGRG8,NY-REN-2,CAHL None
YTH N6-methyladenosine RNA binding protein 3 YTHDF3 FLJ31657 None
rRNA N6-adenosine-methyltransferase ZCCHC4 methyltransferase
tRNA (cytidine(56)-2'-O)-methyltransferase aTrm56 PH0461 methyltransferase
tRNA (cytidine(56)-2'-O)-methyltransferase aTrm56 None methyltransferase
m7GpppN-mRNA hydrolase hDcp2 Nucleoside diphosphate-linked moiety X motif 20, mRNA-decapping enzyme 2 hydrolase
Mitochondrial transcription factor 1 mtTFBp MTF1 methyltransferase
RNA-directed RNA polymerase nsp12 nsp12 RdRp, guanylyltransferase (GTase)
2'-O-methyltransferase nsp16 nsp16 methyltransferase
26S rRNA (cytosine-C(5))-methyltransferase nsun-5 nsun-5 None methyltransferase
N7-guanine RNA cap methyltransferase rep None methyltransferase
tRNA (guanine-N(7)-)-methyltransferase trmB None methyltransferase
tRNA (guanine-N(1)-)-methyltransferase trmD None methyltransferase

Papers

Title Authors Date
Giardia lamblia RNA cap guanine-N2 methyltransferase (Tgs2). Hausmann S, Shuman S Sept. 16, 2005
Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications. Urbonavicius J, Skouloubris S, Myllykallio H, Grosjean H Jan. 1, 2005
A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. Marmier-Gourrier N, Clery A, Senty-Segault V, Charpentier B, Schlotter F, Leclerc F, Fournier R, Branlant C July 1, 2003
Substrate binding analysis of the 23S rRNA methyltransferase RrmJ. Hager J, Staker BL, Jakob U Oct. 1, 2004
Functional specialization of domains tandemly duplicated within 16S rRNA methyltransferase RsmC. Sunita S, Purta E, Durawa M, Tkaczuk KL, Swaathi J, Bujnicki JM, Sivaraman J Jan. 1, 2007
Sequence and genetic analysis of NHP2: a moderately abundant high mobility group-like nuclear protein with an essential function in Saccharomyces cerevisiae. Kolodrubetz D, Burgum A Jan. 1, 1991
Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme. Motorin Y, Grosjean H Aug. 1, 1999
Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase. Walbott H, Husson C, Auxilien S, Golinelli-Pimpaneau B July 1, 2007
The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity. Motorin Y, Keith G, Simon C, Foiret D, Simos G, Hurt E, Grosjean H July 1, 1998
The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:Psi-synthase also acting on tRNAs. Behm-Ansmant I, Urban A, Ma X, Yu YT, Motorin Y, Branlant C Nov. 1, 2003
Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code? Grosjean H, de Crecy-Lagard V, Bjork GR Oct. 1, 2004
The Saccharomyces cerevisiae Pus2 protein encoded by YGL063w ORF is a mitochondrial tRNA:Psi27/28-synthase. Behm-Ansmant I, Branlant C, Motorin Y Oct. 1, 2007
Identification of yeast tRNA Um(44) 2'-O-methyltransferase (Trm44) and demonstration of a Trm44 role in sustaining levels of specific tRNA(Ser) species. Kotelawala L, Grayhack EJ, Phizicky EM Feb. 1, 2008
The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. Ikeuchi Y, Kitahara K, Suzuki T Aug. 20, 2008
IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Kambampati R, Lauhon CT Dec. 14, 1999
Bioinformatic analyses of the tRNA: (guanine 26, N2,N2)-dimethyltransferase (Trm1) family. Bujnicki JM, Leach RA, Debski J, Rychlewski L July 1, 2002
Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA. Purushothaman SK, Bujnicki JM, Grosjean H, Lapeyre B June 1, 2005
Mechanistic investigations of the pseudouridine synthase RluA using RNA containing 5-fluorouridine. Hamilton CS, Greco TM, Vizthum CA, Ginter JM, Johnston MV, Mueller EG Oct. 3, 2006
Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. Bujnicki JM, Feder M, Radlinska M, Blumenthal RM Oct. 1, 2002
Yeast NOP2 encodes an essential nucleolar protein with homology to a human proliferation marker. de Beus E, Brockenbrough JS, Hong B, Aris JP Dec. 1, 1994
Functional diversity of the rhodanese homology domain: the Escherichia coli ybbB gene encodes a selenophosphate-dependent tRNA 2-selenouridine synthase. Wolfe MD, Ahmed F, Lacourciere GM, Lauhon CT, Stadtman TC, Larson TJ Feb. 16, 2004
An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Jiang W, Middleton K, Yoon HJ, Fouquet C, Carbon J Aug. 1, 1993
A truncated aminoacyl-tRNA synthetase modifies RNA. Salazar JC, Ambrogelly A, Crain PF, McCloskey JA, Soll D May 18, 2004
MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. Pierrel F, Douki T, Fontecave M, Atta M Nov. 12, 2004
A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase. Roovers M, Wouters J, Bujnicki JM, Tricot C, Stalon V, Grosjean H, Droogmans L Jan. 1, 2004
The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain. Hallberg BM, Ericsson UB, Johnson KA, Andersen NM, Douthwaite S, Nordlund P, Beuscher AE 4th, Erlandsen H July 21, 2006
MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. Pintard L, Bujnicki JM, Lapeyre B, Bonnerot C March 1, 2002
The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23 S ribosomal RNA methyltransferase. Caldas T, Binet E, Bouloc P, Costa A, Desgres J, Richarme G June 2, 2000
Specificity and mechanism of RNA cap guanine-N2 methyltransferase (Tgs1). Hausmann S, Shuman S Jan. 11, 2005
New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. Frey B, McCloskey J, Kersten W, Kersten H May 1, 1988
Purification, cloning, and properties of the 16S RNA pseudouridine 516 synthase from Escherichia coli. Wrzesinski J, Bakin A, Nurse K, Lane BG, Ofengand J July 11, 1995
Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonne R April 1, 2002
The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. Cabedo H, Macian F, Villarroya M, Escudero JC, Martinez-Vicente M, Knecht E, Armengod ME Dec. 15, 1999
Analysis of sequence and structural features that identify the B/C motif of U3 small nucleolar RNA as the recognition site for the Snu13p-Rrp9p protein pair. Clery A, Senty-Segault V, Leclerc F, Raue HA, Branlant C Jan. 1, 2007
The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Jacq C, Alt-Morbe J, Andre B, Arnold W, Bahr A, Ballesta JP, Bargues M, Baron L, Becker A, Biteau N, Blocker H, Blugeon C, Boskovic J, Brandt P, Bruckner M, Buitrago MJ, Coster F, Delaveau T, del Rey F, Dujon B, Eide LG, Garcia-Cantalejo JM, Goffeau A, Gomez-Peris A, Zaccaria P, et al. May 29, 1997
A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Kato T, Daigo Y, Hayama S, Ishikawa N, Yamabuki T, Ito T, Miyamoto M, Kondo S, Nakamura Y July 1, 2005
Biosynthesis of archaeosine, a novel derivative of 7-deazaguanosine specific to archaeal tRNA, proceeds via a pathway involving base replacement on the tRNA polynucleotide chain. Watanabe M, Matsuo M, Tanaka S, Akimoto H, Asahi S, Nishimura S, Katze JR, Hashizume T, Crain PF, McCloskey JA, Okada N Aug. 8, 1997
Spb1p-directed formation of Gm2922 in the ribosome catalytic center occurs at a late processing stage. Lapeyre B, Purushothaman SK Nov. 19, 2004
Trm7p catalyses the formation of two 2'-O-methylriboses in yeast tRNA anticodon loop. Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B April 2, 2002
Characterization of the 23 S ribosomal RNA m5U1939 methyltransferase from Escherichia coli. Agarwalla S, Kealey JT, Santi DV, Stroud RM March 15, 2002
Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Massenet S, Motorin Y, Lafontaine DL, Hurt EC, Grosjean H, Branlant C March 1, 1999
Genetic mapping and cloning of the gene (trmC) responsible for the synthesis of tRNA (mnm5s2U)methyltransferase in Escherichia coli K12. Hagervall TG, Bjork GR Jan. 1, 1984
Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure. Lesnyak DV, Osipiuk J, Skarina T, Sergiev PV, Bogdanov AA, Edwards A, Savchenko A, Joachimiak A, Dontsova OA Jan. 23, 2007
Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Kalhor HR, Clarke S Dec. 1, 2003
Crystal structure of Bacillus subtilis S-adenosylmethionine:tRNA ribosyltransferase-isomerase. Grimm C, Ficner R, Sgraja T, Haebel P, Klebe G, Reuter K Dec. 22, 2006
Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. Noma A, Kirino Y, Ikeuchi Y, Suzuki T May 17, 2006
Functional redundancy of Spb1p and a snR52-dependent mechanism for the 2'-O-ribose methylation of a conserved rRNA position in yeast. Bonnerot C, Pintard L, Lutfalla G Nov. 1, 2003
MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. Decoster E, Vassal A, Faye G July 5, 1993
Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli. Gu XR, Gustafsson C, Ku J, Yu M, Santi DV March 30, 1999
Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. Del Campo M, Kaya Y, Ofengand J Nov. 1, 2001
A new function of S-adenosylmethionine: the ribosyl moiety of AdoMet is the precursor of the cyclopentenediol moiety of the tRNA wobble base queuine. Slany RK, Bosl M, Crain PF, Kersten H Aug. 3, 1993
An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Soma A, Ikeuchi Y, Kanemasa S, Kobayashi K, Ogasawara N, Ote T, Kato J, Watanabe K, Sekine Y, Suzuki T Sept. 1, 2003
The yggH gene of Escherichia coli encodes a tRNA (m7G46) methyltransferase. De Bie LG, Roovers M, Oudjama Y, Wattiez R, Tricot C, Stalon V, Droogmans L, Bujnicki JM May 1, 2003
Evidence for natural gene transfer from gram-positive cocci to Escherichia coli. Brisson-Noel A, Arthur M, Courvalin P April 1, 1988
The structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold with a unique knot. Michel G, Sauve V, Larocque R, Li Y, Matte A, Cygler M Oct. 1, 2002
Functional categorization of the conserved basic amino acid residues in TrmH (tRNA (Gm18) methyltransferase) enzymes. Watanabe K, Nureki O, Fukai S, Endo Y, Hori H Nov. 10, 2006
Deletion of the Escherichia coli pseudouridine synthase gene truB blocks formation of pseudouridine 55 in tRNA in vivo, does not affect exponential growth, but confers a strong selective disadvantage in competition with wild-type cells. Gutgsell N, Englund N, Niu L, Kaya Y, Lane BG, Ofengand J Dec. 1, 2000
The conserved Cys-X1-X2-Cys motif present in the TtcA protein is required for the thiolation of cytidine in position 32 of tRNA from Salmonella enterica serovar Typhimurium. Jager G, Leipuviene R, Pollard MG, Qian Q, Bjork GR Jan. 1, 2004
Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases. Bujnicki JM, Feder M, Ayres CL, Redman KL Jan. 1, 2004
Transfer RNA(5-methylaminomethyl-2-thiouridine)-methyltransferase from Escherichia coli K-12 has two enzymatic activities. Hagervall TG, Edmonds CG, McCloskey JA, Bjork GR June 25, 1987
Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Stengl B, Reuter K, Klebe G Nov. 1, 2005
The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Bussey H, Storms RK, Ahmed A, Albermann K, Allen E, Ansorge W, Araujo R, Aparicio A, Barrell B, Badcock K, Benes V, Botstein D, Bowman S, Bruckner M, Carpenter J, Cherry JM, Chung E, Churcher C, Coster F, Davis K, Davis RW, Dietrich FS, Delius H, DiPaolo T, Hani J, et al. May 29, 1997
GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Calvo O, Cuesta R, Anderson J, Gutierrez N, Garcia-Barrio MT, Hinnebusch AG, Tamame M June 1, 1999
Isolation and characterization of the yeast mRNA capping enzyme beta subunit gene encoding RNA 5'-triphosphatase, which is essential for cell viability. Tsukamoto T, Shibagaki Y, Imajoh-Ohmi S, Murakoshi T, Suzuki M, Nakamura A, Gotoh H, Mizumoto K Oct. 9, 1997
Substitutions in an active site loop of Escherichia coli IscS result in specific defects in Fe-S cluster and thionucleoside biosynthesis in vivo. Lauhon CT, Skovran E, Urbina HD, Downs DM, Vickery LE May 7, 2004
A second function for pseudouridine synthases: A point mutant of RluD unable to form pseudouridines 1911, 1915, and 1917 in Escherichia coli 23S ribosomal RNA restores normal growth to an RluD-minus strain. Gutgsell NS, Del Campo M, Raychaudhuri S, Ofengand J July 1, 2001
Spb1p is a putative methyltransferase required for 60S ribosomal subunit biogenesis in Saccharomyces cerevisiae. Kressler D, Rojo M, Linder P, Cruz J Dec. 1, 1999
The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. Toh SM, Xiong L, Bae T, Mankin AS Feb. 1, 2008
Identification of Escherichia coli m2G methyltransferases: I. the ycbY gene encodes a methyltransferase specific for G2445 of the 23 S rRNA. Lesnyak DV, Sergiev PV, Bogdanov AA, Dontsova OA Nov. 17, 2006
The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function. Yim L, Martinez-Vicente M, Villarroya M, Aguado C, Knecht E, Armengod ME Aug. 1, 2003
tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. Wolf J, Gerber AP, Keller W July 15, 2002
Nop5p is a small nucleolar ribonucleoprotein component required for pre-18 S rRNA processing in yeast. Wu P, Brockenbrough JS, Metcalfe AC, Chen S, Aris JP June 26, 1998
Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family. Watanabe K, Nureki O, Fukai S, Ishii R, Okamoto H, Yokoyama S, Endo Y, Hori H March 18, 2005
Molecular cloning of the Escherichia coli miaA gene involved in the formation of delta 2-isopentenyl adenosine in tRNA. Caillet J, Droogmans L Sept. 1, 1988
Discovery of a gene family critical to wyosine base formation in a subset of phenylalanine-specific transfer RNAs. Waas WF, de Crecy-Lagard V, Schimmel P Nov. 11, 2005
The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. Gutgsell NS, Deutscher MP, Ofengand J July 1, 2005
Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli. Lauhon CT Dec. 1, 2002
RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Baker DL, Youssef OA, Chastkofsky MI, Dy DA, Terns RM, Terns MP May 15, 2005
Identification of the rrmA gene encoding the 23S rRNA m1G745 methyltransferase in Escherichia coli and characterization of an m1G745-deficient mutant. Gustafsson C, Persson BC Feb. 1, 1998
In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product. Leinfelder W, Forchhammer K, Veprek B, Zehelein E, Bock A Feb. 1, 1990
Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. Basturea GN, Rudd KE, Deutscher MP March 1, 2006
Cloning and restriction mapping of the trmA gene coding for transfer ribonucleic acid (5-methyluridine)-methyltransferase in Escherichia coli K-12. Ny T, Bjork GR May 1, 1980
Identification of the TRM2 gene encoding the tRNA(m5U54)methyltransferase of Saccharomyces cerevisiae. Nordlund ME, Johansson JO, von Pawel-Rammingen U, Bystrom AS June 1, 2000
Structural features of the guide:target RNA duplex required for archaeal box C/D sRNA-guided nucleotide 2'-O-methylation. Appel CD, Maxwell ES June 1, 2007
The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. Xing F, Hiley SL, Hughes TR, Phizicky EM April 23, 2004
The RNA Modification Database: 1999 update. Rozenski J, Crain PF, McCloskey JA Feb. 1, 1999
Crystallization and preliminary X-ray characterization of the nitrile reductase QueF: a queuosine-biosynthesis enzyme. Swairjo MA, Reddy RR, Lee B, Van Lanen SG, Brown S, de Crecy-Lagard V, Iwata-Reuyl D, Schimmel P Oct. 1, 2005
The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. Campanacci V, Dubois DY, Becker HD, Kern D, Spinelli S, Valencia C, Pagot F, Salomoni A, Grisel S, Vincentelli R, Bignon C, Lapointe J, Giege R, Cambillau C March 19, 2004
Identification of the tRNA-dihydrouridine synthase family. Bishop AC, Xu J, Johnson RC, Schimmel P, de Crecy-Lagard V July 12, 2002
An adenosine deaminase that generates inosine at the wobble position of tRNAs. Gerber AP, Keller W Nov. 5, 1999
Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Nakanishi K, Fukai S, Ikeuchi Y, Soma A, Sekine Y, Suzuki T, Nureki O May 24, 2005
The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Tettelin H, Agostoni Carbone ML, Albermann K, Albers M, Arroyo J, Backes U, Barreiros T, Bertani I, Bjourson AJ, Bruckner M, Bruschi CV, Carignani G, Castagnoli L, Cerdan E, Clemente ML, Coblenz A, Coglievina M, Coissac E, Defoor E, Del Bino S, Delius H, Delneri D, de Wergifosse P, Dujon B, Kleine K, et al. May 29, 1997
The Cbf5-Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Hamma T, Reichow SL, Varani G, Ferre-D'Amare AR Dec. 1, 2005
Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon. Blaise M, Becker HD, Lapointe J, Cambillau C, Giege R, Kern D Sept. 1, 2005
Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli. Yim L, Moukadiri I, Bjork GR, Armengod ME Jan. 1, 2006
A unique RNA Fold in the RumA-RNA-cofactor ternary complex contributes to substrate selectivity and enzymatic function. Lee TT, Agarwalla S, Stroud RM March 11, 2005
Crystal structure of IscA, an iron-sulfur cluster assembly protein from Escherichia coli. Cupp-Vickery JR, Silberg JJ, Ta DT, Vickery LE April 16, 2004
The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAPro(cmo5UGG) promotes reading of all four proline codons in vivo. Nasvall SJ, Chen P, Bjork GR Oct. 1, 2004
The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Philippsen P, Kleine K, Pohlmann R, Dusterhoft A, Hamberg K, Hegemann JH, Obermaier B, Urrestarazu LA, Aert R, Albermann K, Altmann R, Andre B, Baladron V, Ballesta JP, Becam AM, Beinhauer J, Boskovic J, Buitrago MJ, Bussereau F, Coster F, Crouzet M, D'Angelo M, Dal Pero F, De Antoni A, Hani J, et al. May 29, 1997
Identification of the miaB gene, involved in methylthiolation of isopentenylated A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli. Esberg B, Leung HC, Tsui HC, Bjork GR, Winkler ME Dec. 1, 1999
Iron-sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M June 22, 2001
Sequence analysis and structure prediction of 23S rRNA:m1G methyltransferases reveals a conserved core augmented with a putative Zn-binding domain in the N-terminus and family-specific elaborations in the C-terminus. Bujnicki JM, Blumenthal RM, Rychlewski L Feb. 1, 2002
Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gelugne JP, Caizergues-Ferrer M Dec. 1, 1998
GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. Girard JP, Lehtonen H, Caizergues-Ferrer M, Amalric F, Tollervey D, Lapeyre B Jan. 1, 1992
Sequence-structure-function relationships of a tRNA (m7G46) methyltransferase studied by homology modeling and site-directed mutagenesis. Purta E, van Vliet F, Tricot C, De Bie LG, Feder M, Skowronek K, Droogmans L, Bujnicki JM May 15, 2005
Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. Alexandrov A, Martzen MR, Phizicky EM Oct. 1, 2002
The coiled-coil domain of the Nop56/58 core protein is dispensable for sRNP assembly but is critical for archaeal box C/D sRNP-guided nucleotide methylation. Zhang X, Champion EA, Tran EJ, Brown BA 2nd, Baserga SJ, Maxwell ES June 1, 2006
Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p. Hellmuth K, Grosjean H, Motorin Y, Deinert K, Hurt E, Simos G Dec. 1, 2000
The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. Ozanick S, Krecic A, Andersland J, Anderson JT Aug. 1, 2005
Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA. Ansmant I, Massenet S, Grosjean H, Motorin Y, Branlant C May 1, 2000
In silico analysis of the tRNA:m1A58 methyltransferase family: homology-based fold prediction and identification of new members from Eubacteria and Archaea. Bujnicki JM Oct. 26, 2001
The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Anderson J, Phan L, Cuesta R, Carlson BA, Pak M, Asano K, Bjork GR, Tamame M, Hinnebusch AG Dec. 1, 1998
The 2'-O-methyltransferase responsible for modification of yeast tRNA at position 4. Wilkinson ML, Crary SM, Jackman JE, Grayhack EJ, Phizicky EM March 1, 2007
Phylogenomic analysis of 16S rRNA:(guanine-N2) methyltransferases suggests new family members and reveals highly conserved motifs and a domain structure similar to other nucleic acid amino-methyltransferases. Bujnicki JM Nov. 1, 2000
The structural gene (trmD) for the tRNA(m1G)methyltransferase is part of a four polypeptide operon in Escherichia coli K-12. Bystrom AS, Bjork GR Jan. 1, 1982
Crystal structure of tRNA pseudouridine synthase TruA from Thermus thermophilus HB8. Dong X, Bessho Y, Shibata R, Nishimoto M, Shirouzu M, Kuramitsu S, Yokoyama S July 1, 2006
Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA. Suzuki Y, Noma A, Suzuki T, Senda M, Senda T, Ishitani R, Nureki O Oct. 5, 2007
Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure. Motorin Y, Bec G, Tewari R, Grosjean H July 1, 1997
Rit1, a tRNA backbone-modifying enzyme that mediates initiator and elongator tRNA discrimination. Astrom SU, Bystrom AS Nov. 4, 1994
The crystal structure of E. coli rRNA pseudouridine synthase RluE. Pan H, Ho JD, Stroud RM, Finer-Moore J April 13, 2007
An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. Dubois DY, Blaise M, Becker HD, Campanacci V, Keith G, Giege R, Cambillau C, Lapointe J, Kern D May 18, 2004
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem-loop. Soderberg T, Poulter CD May 30, 2000
The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast. Lafontaine D, Vandenhaute J, Tollervey D Oct. 15, 1995
How U38, 39, and 40 of many tRNAs become the targets for pseudouridylation by TruA. Hur S, Stroud RM April 27, 2007
Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription. Schubot FD, Chen CJ, Rose JP, Dailey TA, Dailey HA, Wang BC Oct. 1, 2001
The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae. Anderson J, Phan L, Hinnebusch AG May 9, 2000
Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Dihanich ME, Najarian D, Clark R, Gillman EC, Martin NC, Hopper AK Feb. 1, 1987
A novel unanticipated type of pseudouridine synthase with homologs in bacteria, archaea, and eukarya. Kaya Y, Ofengand J June 1, 2003
Protein phosphatase methyltransferase 1 (Ppm1p) is the sole activity responsible for modification of the major forms of protein phosphatase 2A in yeast. Kalhor HR, Luk K, Ramos A, Zobel-Thropp P, Clarke S Nov. 15, 2001
Formation of the conserved pseudouridine at position 55 in archaeal tRNA. Roovers M, Hale C, Tricot C, Terns MP, Terns RM, Grosjean H, Droogmans L Jan. 1, 2006
Sequence analysis and structure prediction of aminoglycoside-resistance 16S rRNA:m7G methyltransferases. Bujnicki JM, Rychlewski L Jan. 1, 2001
RluD, a highly conserved pseudouridine synthase, modifies 50S subunits more specifically and efficiently than free 23S rRNA. Vaidyanathan PP, Deutscher MP, Malhotra A Nov. 1, 2007
SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing. Kolman C, Soll D March 1, 1993
The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. Johansson MJ, Bystrom AS April 1, 2004
RNA methylation under heat shock control. Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U Aug. 1, 2000
Crystal structure of human Pus10, a novel pseudouridine synthase. McCleverty CJ, Hornsby M, Spraggon G, Kreusch A Nov. 9, 2007
Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. Basturea GN, Deutscher MP Nov. 1, 2007
The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Taylor AB, Meyer B, Leal BZ, Kotter P, Schirf V, Demeler B, Hart PJ, Entian KD, Wohnert J March 1, 2008
The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gm18) 2'-O-methyltransferase activity. Persson BC, Jager G, Gustafsson C Oct. 15, 1997
Formation of thiolated nucleosides present in tRNA from Salmonella enterica serovar Typhimurium occurs in two principally distinct pathways. Leipuviene R, Qian Q, Bjork GR Jan. 1, 2004
Novel plasmid-mediated 16S rRNA m1A1408 methyltransferase, NpmA, found in a clinically isolated Escherichia coli strain resistant to structurally diverse aminoglycosides. Wachino J, Shibayama K, Kurokawa H, Kimura K, Yamane K, Suzuki S, Shibata N, Ike Y, Arakawa Y Dec. 1, 2007
Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Pintard L, Kressler D, Lapeyre B Jan. 1, 2000
Pseudouridylation at position 32 of mitochondrial and cytoplasmic tRNAs requires two distinct enzymes in Saccharomyces cerevisiae. Behm-Ansmant I, Grosjean H, Massenet S, Motorin Y, Branlant C Dec. 17, 2004
MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Kambampati R, Lauhon CT Jan. 4, 2003
YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407. Andersen NM, Douthwaite S June 9, 2006
YbeA is the m3Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Douthwaite S Oct. 1, 2008
Structure of the pseudouridine synthase RsuA from Haemophilus influenzae. Matte A, Louie GV, Sivaraman J, Cygler M, Burley SK April 1, 2005
Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K Jan. 1, 2007
The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Teplova M, Tereshko V, Sanishvili R, Joachimiak A, Bushueva T, Anderson WF, Egli M Dec. 1, 2000
Translational defects of Escherichia coli mutants deficient in the Um(2552) 23S ribosomal RNA methyltransferase RrmJ/FTSJ. Caldas T, Binet E, Bouloc P, Richarme G May 19, 2000
The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23 S ribosomal RNA. Conrad J, Sun D, Englund N, Ofengand J July 17, 1998
Dim1p is required for efficient splicing and export of mRNA encoding lid1p, a component of the fission yeast anaphase-promoting complex. Carnahan RH, Feoktistova A, Ren L, Niessen S, Yates JR 3rd, Gould KL March 1, 2005
Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. Cupp-Vickery JR, Urbina H, Vickery LE July 25, 2003
A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. Xing F, Martzen MR, Phizicky EM March 1, 2002
A novel methyltransferase required for the formation of the hypermodified nucleoside wybutosine in eucaryotic tRNA. Kalhor HR, Penjwini M, Clarke S Aug. 26, 2005
The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 2'-O-ribose methyltransferase catalyzing the formation of Gm18 in tRNAs. Cavaille J, Chetouani F, Bachellerie JP Feb. 1, 1999
Insights into catalysis by a knotted TrmD tRNA methyltransferase. Elkins PA, Watts JM, Zalacain M, van Thiel A, Vitazka PR, Redlak M, Andraos-Selim C, Rastinejad F, Holmes WM Nov. 7, 2003
The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase. Purta E, van Vliet F, Tkaczuk KL, Dunin-Horkawicz S, Mori H, Droogmans L, Bujnicki JM Jan. 1, 2006
Isolation and characterization of SUA5, a novel gene required for normal growth in Saccharomyces cerevisiae. Na JG, Pinto I, Hampsey M Aug. 1, 1992
The ybiN gene of Escherichia coli encodes adenine-N6 methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. Sergiev PV, Serebryakova MV, Bogdanov AA, Dontsova OA Feb. 4, 2008
A primordial tRNA modification required for the evolution of life? Bjork GR, Jacobsson K, Nilsson K, Johansson MJ, Bystrom AS, Persson OP Feb. 15, 2001
MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. Colby G, Wu M, Tzagoloff A Oct. 23, 1998
RNA recognition mechanism of eukaryote tRNA (m7G46) methyltransferase (Trm8-Trm82 complex). Matsumoto K, Toyooka T, Tomikawa C, Ochi A, Takano Y, Takayanagi N, Endo Y, Hori H April 17, 2007
The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. Tomoyasu T, Yuki T, Morimura S, Mori H, Yamanaka K, Niki H, Hiraga S, Ogura T March 1, 1993
Structure and organization of Escherichia coli genes involved in biosynthesis of the deazaguanine derivative queuine, a nutrient factor for eukaryotes. Reuter K, Slany R, Ullrich F, Kersten H April 1, 1991
Identifying the methyltransferases for m(5)U747 and m(5)U1939 in 23S rRNA using MALDI mass spectrometry. Madsen CT, Mengel-Jorgensen J, Kirpekar F, Douthwaite S Aug. 15, 2003
Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Pan H, Agarwalla S, Moustakas DT, Finer-Moore J, Stroud RM Oct. 28, 2003
Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast. Hong B, Brockenbrough JS, Wu P, Aris JP Feb. 1, 1997
Disruption and functional analysis of six ORFs of chromosome IV: YDL103c (QRI1), YDL105w (QRI2), YDL112w (TRM3), YDL113c, YDL116w (NUP84) and YDL167c (NRP1). Reynaud A, Facca C, Sor F, Faye G Jan. 1, 2001
Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. Tkaczuk KL, Dunin-Horkawicz S, Purta E, Bujnicki JM Jan. 1, 2007
Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA Oct. 15, 2002
Identification of a gene involved in the generation of 4-thiouridine in tRNA. Mueller EG, Buck CJ, Palenchar PM, Barnhart LE, Paulson JL June 1, 1998
tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast. Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R Feb. 1, 2006
Characterization of yeast protein Deg1 as pseudouridine synthase (Pus3) catalyzing the formation of psi 38 and psi 39 in tRNA anticodon loop. Lecointe F, Simos G, Sauer A, Hurt EC, Motorin Y, Grosjean H Feb. 16, 1998
Active site in RrmJ, a heat shock-induced methyltransferase. Hager J, Staker BL, Bugl H, Jakob U Nov. 1, 2002
tRNA-modifying MiaE protein from Salmonella typhimurium is a nonheme diiron monooxygenase. Mathevon C, Pierrel F, Oddou JL, Garcia-Serres R, Blondin G, Latour JM, Menage S, Gambarelli S, Fontecave M, Atta M Aug. 14, 2007
Functional requirement of a site-specific ribose methylation in ribosomal RNA. Sirum-Connolly K, Mason TL Dec. 17, 1993
Temperature sensitive nop2 alleles defective in synthesis of 25S rRNA and large ribosomal subunits in Saccharomyces cerevisiae. Hong B, Wu K, Brockenbrough JS, Wu P, Aris JP July 15, 2001
Ribosomal RNA guanine-(N2)-methyltransferases and their targets. Sergiev PV, Bogdanov AA, Dontsova OA Jan. 1, 2007
Yeast mRNA cap methyltransferase is a 50-kilodalton protein encoded by an essential gene. Mao X, Schwer B, Shuman S Aug. 1, 1995
mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. Bujnicki JM, Feder M, Radlinska M, Rychlewski L Jan. 1, 2001
Reduced misreading of asparagine codons by Escherichia coli tRNALys with hypomodified derivatives of 5-methylaminomethyl-2-thiouridine in the wobble position. Hagervall TG, Pomerantz SC, McCloskey JA Nov. 20, 1998
Structural insights into the GTPase domain of Escherichia coli MnmE protein. Monleon D, Martinez-Vicente M, Esteve V, Yim L, Prado S, Armengod ME, Celda B Jan. 15, 2007
The cysteine desulfurase IscS is required for synthesis of all five thiolated nucleosides present in tRNA from Salmonella enterica serovar typhimurium. Nilsson K, Lundgren HK, Hagervall TG, Bjork GR Dec. 1, 2002
Crystal structure of the highly divergent pseudouridine synthase TruD reveals a circular permutation of a conserved fold. Hoang C, Ferre-D'Amare AR July 1, 2004
Identification of a bifunctional enzyme MnmC involved in the biosynthesis of a hypermodified uridine in the wobble position of tRNA. Bujnicki JM, Oudjama Y, Roovers M, Owczarek S, Caillet J, Droogmans L Aug. 1, 2004
Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits. White J, Li Z, Sardana R, Bujnicki JM, Marcotte EM, Johnson AW May 1, 2008
A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for psi 746 in 23S RNA is also specific for psi 32 in tRNA(phe). Wrzesinski J, Nurse K, Bakin A, Lane BG, Ofengand J June 1, 1995
Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase. Lee TT, Agarwalla S, Stroud RM March 1, 2004
Isolation and sequencing of NOP1. A yeast gene encoding a nucleolar protein homologous to a human autoimmune antigen. Henriquez R, Blobel G, Aris JP Jan. 5, 1990
Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution. O'Farrell HC, Pulicherla N, Desai PM, Rife JP May 1, 2006
Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain. Waterman DG, Ortiz-Lombardia M, Fogg MJ, Koonin EV, Antson AA Jan. 10, 2006
Identification and characterization of the tRNA:Psi 31-synthase (Pus6p) of Saccharomyces cerevisiae. Ansmant I, Motorin Y, Massenet S, Grosjean H, Branlant C Sept. 14, 2001
Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis. Liiv A, Karitkina D, Maivali U, Remme J Jan. 1, 2005
Effects of mutagenesis in the switch I region and conserved arginines of Escherichia coli MnmE protein, a GTPase involved in tRNA modification. Martinez-Vicente M, Yim L, Villarroya M, Mellado M, Perez-Paya E, Bjork GR, Armengod ME Sept. 2, 2005
Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Guan MX, Yan Q, Li X, Bykhovskaya Y, Gallo-Teran J, Hajek P, Umeda N, Zhao H, Garrido G, Mengesha E, Suzuki T, del Castillo I, Peters JL, Li R, Qian Y, Wang X, Ballana E, Shohat M, Lu J, Estivill X, Watanabe K, Fischel-Ghodsian N Aug. 1, 2006
Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Rashid R, Liang B, Baker DL, Youssef OA, He Y, Phipps K, Terns RM, Terns MP, Li H Feb. 20, 2006
Identification of Escherichia coli m2G methyltransferases: II. The ygjO gene encodes a methyltransferase specific for G1835 of the 23 S rRNA. Sergiev PV, Lesnyak DV, Bogdanov AA, Dontsova OA Nov. 17, 2006
Crystallization and characterization of a fragment of pseudouridine synthase RluC from Escherichia coli. Corollo D, Blair-Johnson M, Conrad J, Fiedler T, Sun D, Wang L, Ofengand J, Fenna R Feb. 1, 1999
The YqfN protein of Bacillus subtilis is the tRNA: m1A22 methyltransferase (TrmK). Roovers M, Kaminska KH, Tkaczuk KL, Gigot D, Droogmans L, Bujnicki JM June 1, 2008
Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis. Tkaczuk KL, Obarska A, Bujnicki JM Jan. 1, 2006
The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D Jan. 15, 1998
The rlmB gene is essential for formation of Gm2251 in 23S rRNA but not for ribosome maturation in Escherichia coli. Lovgren JM, Wikstrom PM Dec. 1, 2001
Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants. Nishimura K, Johansen SK, Inaoka T, Hosaka T, Tokuyama S, Tahara Y, Okamoto S, Kawamura F, Douthwaite S, Ochi K Aug. 1, 2007
Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold. Kaya Y, Del Campo M, Ofengand J, Malhotra A April 30, 2004
The structure of the TrmE GTP-binding protein and its implications for tRNA modification. Scrima A, Vetter IR, Armengod ME, Wittinghofer A Feb. 12, 2005
Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. Jackman JE, Montange RK, Malik HS, Phizicky EM May 1, 2003
Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2. Gerber A, Grosjean H, Melcher T, Keller W Aug. 17, 1998
The carboxyl-terminal extension of yeast tRNA m5C methyltransferase enhances the catalytic efficiency of the amino-terminal domain. Walbott H, Auxilien S, Grosjean H, Golinelli-Pimpaneau B Aug. 10, 2007
RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited--bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure. Bujnicki JM, Rychlewski L April 3, 2002
Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae. Ellis SR, Morales MJ, Li JM, Hopper AK, Martin NC July 25, 1986
The ribosomal components responsible for kasugamycin dependence, and its suppression, in a mutant of Escherichia coli. Dabbs ER Feb. 1, 1980
Crystal structure of RlmAI: implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site. Das K, Acton T, Chiang Y, Shih L, Arnold E, Montelione GT March 23, 2004
Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Gautier T, Berges T, Tollervey D, Hurt E Dec. 1, 1997
Sequence-structure-function relationships of Tgs1, the yeast snRNA/snoRNA cap hypermethylase. Mouaikel J, Bujnicki JM, Tazi J, Bordonne R Aug. 15, 2003
Assembly of the archaeal box C/D sRNP can occur via alternative pathways and requires temperature-facilitated sRNA remodeling. Gagnon KT, Zhang X, Agris PF, Maxwell ES Oct. 6, 2006
Structural bioinformatics analysis of enzymes involved in the biosynthesis pathway of the hypermodified nucleoside ms(2)io(6)A37 in tRNA. Kaminska KH, Baraniak U, Boniecki M, Nowaczyk K, Czerwoniec A, Bujnicki JM Feb. 1, 2008
Transfer RNA modification enzymes from Pyrococcus furiosus: detection of the enzymatic activities in vitro. Constantinesco F, Motorin Y, Grosjean H March 1, 1999
Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli. Tscherne JS, Nurse K, Popienick P, Michel H, Sochacki M, Ofengand J Jan. 9, 1999
mRNA capping enzyme. Isolation and characterization of the gene encoding mRNA guanylytransferase subunit from Saccharomyces cerevisiae. Shibagaki Y, Itoh N, Yamada H, Nagata S, Mizumoto K May 15, 1992
Ligand-mediated anticodon conformational changes occur during tRNA methylation by a TrmD methyltransferase. Watts JM, Gabruzsk J, Holmes WM May 3, 2005
Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure. Hoang C, Chen J, Vizthum CA, Kandel JM, Hamilton CS, Mueller EG, Ferre-D'Amare AR Nov. 17, 2006
Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Seidel-Rogol BL, McCulloch V, Shadel GS Feb. 1, 2003
Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. Persson BC, Bjork GR Dec. 1, 1993
Sequence analysis of a 13.4 kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames. Casamayor A, Khalid H, Balcells L, Aldea M, Casas C, Herrero E, Arino J Sept. 1, 1996
Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. Scrima A, Wittinghofer A June 21, 2006
Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations. Yan Q, Bykhovskaya Y, Li R, Mengesha E, Shohat M, Estivill X, Fischel-Ghodsian N, Guan MX April 21, 2006
The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn. Nolivos S, Carpousis AJ, Clouet-d'Orval B Jan. 1, 2005
Functional effect of deletion and mutation of the Escherichia coli ribosomal RNA and tRNA pseudouridine synthase RluA. Raychaudhuri S, Niu L, Conrad J, Lane BG, Ofengand J July 2, 1999
THUMP--a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases. Aravind L, Koonin EV April 1, 2001
tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p. Alexandrov A, Grayhack EJ, Phizicky EM May 1, 2005
Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I. Kammen HO, Marvel CC, Hardy L, Penhoet EE Jan. 15, 1988
A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. Blaise M, Becker HD, Keith G, Cambillau C, Lapointe J, Giege R, Kern D Jan. 1, 2004
Structure of tRNA dimethylallyltransferase: RNA modification through a channel. Xie W, Zhou C, Huang RH March 30, 2007
Domain organization and crystal structure of the catalytic domain of E.coli RluF, a pseudouridine synthase that acts on 23S rRNA. Sunita S, Zhenxing H, Swaathi J, Cygler M, Matte A, Sivaraman J June 16, 2006
From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold. Van Lanen SG, Reader JS, Swairjo MA, de Crecy-Lagard V, Lee B, Iwata-Reuyl D March 22, 2005
Transfer and isomerization of the ribose moiety of AdoMet during the biosynthesis of queuosine tRNAs, a new unique reaction catalyzed by the QueA protein from Escherichia coli. Slany RK, Bosl M, Kersten H Jan. 1, 1994
The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. Torchet C, Badis G, Devaux F, Costanzo G, Werner M, Jacquier A June 1, 2005
Crystal structures of tRNA-guanine transglycosylase (TGT) in complex with novel and potent inhibitors unravel pronounced induced-fit adaptations and suggest dimer formation upon substrate binding. Stengl B, Meyer EA, Heine A, Brenk R, Diederich F, Klebe G July 13, 2007
Lack of pseudouridine 38/39 in the anticodon arm of yeast cytoplasmic tRNA decreases in vivo recoding efficiency. Lecointe F, Namy O, Hatin I, Simos G, Rousset JP, Grosjean H Aug. 23, 2002
Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). Nishimura K, Hosaka T, Tokuyama S, Okamoto S, Ochi K May 1, 2007
Purification, cloning, and characterization of the 16 S RNA m2G1207 methyltransferase from Escherichia coli. Tscherne JS, Nurse K, Popienick P, Ofengand J Feb. 8, 1999
The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Becker HF, Motorin Y, Planta RJ, Grosjean H Nov. 15, 1997
16S ribosomal RNA pseudouridine synthase RsuA of Escherichia coli: deletion, mutation of the conserved Asp102 residue, and sequence comparison among all other pseudouridine synthases. Conrad J, Niu L, Rudd K, Lane BG, Ofengand J June 1, 1999
Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer. Rodriguez V, Chen Y, Elkahloun A, Dutra A, Pak E, Chandrasekharappa S July 1, 2007
Sequential 2'-O-methylation of archaeal pre-tRNATrp nucleotides is guided by the intron-encoded but trans-acting box C/D ribonucleoprotein of pre-tRNA. Singh SK, Gurha P, Tran EJ, Maxwell ES, Gupta R Nov. 12, 2004
A purified selenophosphate-dependent enzyme from Salmonella typhimurium catalyzes the replacement of sulfur in 2-thiouridine residues in tRNAs with selenium. Veres Z, Stadtman TC Aug. 16, 1994
Analysis of Snu13p mutations reveals differential interactions with the U4 snRNA and U3 snoRNA. Dobbyn HC, O'Keefe RT Jan. 1, 2004
Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria. Hansen MA, Kirpekar F, Ritterbusch W, Vester B Feb. 1, 2002
The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA. Kirpekar F, Hansen LH, Rasmussen A, Poehlsgaard J, Vester B May 6, 2005
Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria. Kaminska KH, Purta E, Hansen LH, Bujnicki JM, Vester B, Long KS March 1, 2010
Structural basis for methyl transfer by a radical SAM enzyme. Boal AK, Grove TL, McLaughlin MI, Yennawar NH, Booker SJ, Rosenzweig AC May 27, 2011
A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B Aug. 1, 2005
Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. Giessing AM, Jensen SS, Rasmussen A, Hansen LH, Gondela A, Long K, Vester B, Kirpekar F Feb. 1, 2009
RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA Yan F, LaMarre JM, Röhrich R, Wiesner J, Jomaa H, Mankin AS, Fujimori DG March 24, 2010
RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift. Yan F, Fujimori DG March 8, 2011
YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Purta E, O'Connor M, Bujnicki JM, Douthwaite S June 1, 2009
YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962. Purta E, O'Connor M, Bujnicki JM, Douthwaite S Nov. 14, 2008
Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes. Sunita S, Tkaczuk KL, Purta E, Kasprzak JM, Douthwaite S, Bujnicki JM, Sivaraman J Nov. 14, 2008
Sequence-structure-function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA. Roovers M, Oudjama Y, Kaminska KH, Purta E, Caillet J, Droogmans L, Bujnicki JM June 1, 2008
Assay of both activities of the bifunctional tRNA-modifying enzyme MnmC reveals a kinetic basis for selective full modification of cmnm5s2U to mnm5s2U. Pearson D, Carell T June 1, 2011
Crystal structure of the bifunctional tRNA modification enzyme MnmC from Escherichia coli. Kitamura A, Sengoku T, Nishimoto M, Yokoyama S, Bessho Y July 1, 2011
Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. Meyer S, Scrima A, Versées W, Wittinghofer A July 11, 2008
Hypermethylation of yeast telomerase RNA by the snRNA and snoRNA methyltransferase Tgs1. Franke J, Gehlen J, Ehrenhofer-Murray AE Nov. 1, 2008
Snapshots of tRNA sulphuration via an adenylated intermediate. Numata T, Ikeuchi Y, Fukai S, Suzuki T, Nureki O July 27, 2006
The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. Foster PG, Nunes CR, Greene P, Moustakas D, Stroud RM Dec. 1, 2003
Structure of a TrmA-RNA complex: A consensus RNA fold contributes to substrate selectivity and catalysis in m5U methyltransferases. Alian A, Lee TT, Griner SL, Stroud RM, Finer-Moore J May 13, 2008
Structure of the yeast tRNA m7G methylation complex. Leulliot N, Chaillet M, Durand D, Ulryck N, Blondeau K, van Tilbeurgh H Jan. 1, 2008
Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nakanishi K, Bonnefond L, Kimura S, Suzuki T, Ishitani R, Nureki O Oct. 22, 2009
Structural and functional divergence within the Dim1/KsgA family of rRNA methyltransferases. Pulicherla N, Pogorzala LA, Xu Z, O Farrell HC, Musayev FN, Scarsdale JN, Sia EA, Culver GM, Rife JP Sept. 4, 2009
Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Lima CD, Wang LK, Shuman S Nov. 24, 1999
X-ray structure of tRNA pseudouridine synthase TruD reveals an inserted domain with a novel fold. Ericsson UB, Nordlund P, Hallberg BM May 7, 2004
Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Kim J, Malashkevich V, Roday S, Lisbin M, Schramm VL, Almo SC May 23, 2006
Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis. Wright JR, Keffer-Wilkes LC, Dobing SR, Kothe U Oct. 13, 2011
Control of catalytic cycle by a pair of analogous tRNA modification enzymes. Christian T, Lahoud G, Liu C, Hou YM July 9, 2010
Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA. Gurha P, Gupta R Dec. 1, 2008
A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs. Behm-Ansmant I, Massenet S, Immel F, Patton JR, Motorin Y, Branlant C Aug. 1, 2006
RNA:pseudouridine synthetase Pus1 from Saccharomyces cerevisiae: oligomerization property and stoichiometry of the complex with yeast tRNA(Phe). Arluison V, Batelier G, Riès-Kautt M, Grosjean H July 1, 1999
Pseudouridine synthetase Pus1 of Saccharomyces cerevisiae: kinetic characterisation, tRNA structural requirement and real-time analysis of its complex with tRNA. Arluison V, Buckle M, Grosjean H June 11, 1999
Transfer RNA-pseudouridine synthetase Pus1 of Saccharomyces cerevisiae contains one atom of zinc essential for its native conformation and tRNA recognition. Arluison V, Hountondji C, Robert B, Grosjean H May 19, 1998
Translational misreading: a tRNA modification counteracts a +2 ribosomal frameshift. Brégeon D, Colot V, Radman M, Taddei F Sept. 1, 2001
Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions. Moukadiri I, Prado S, Piera J, Velázquez-Campoy A, Björk GR, Armengod ME Nov. 1, 2009
Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K, Suzuki T Jan. 14, 2005
tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5' end of tRNAHis. Gu W, Jackman JE, Lohan AJ, Gray MW, Phizicky EM Dec. 1, 2003
tRNAHis guanylyltransferase (THG1), a unique 3′-5′ nucleotidyl transferase, shares unexpected structural homology with canonical 5′-3′ DNA polymerases. Hyde SJ, Eckenroth BE, Smith BA, Eberley WA, Heintz NH, Jackman JE, Doublié S Nov. 23, 2010
YhiQ Is RsmJ, the Methyltransferase Responsible for Methylation of G1516 in 16S rRNA of E. coli. Basturea GN, Dague DR, Deutscher MP, Rudd KE Nov. 4, 2011
Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA. Kimura S, Suzuki T March 1, 2010
Identification of 5-hydroxycytidine at position 2501 concludes characterization of modified nucleotides in E. coli 23S rRNA. Havelund JF, Giessing AM, Hansen T, Rasmussen A, Scott LG, Kirpekar F Aug. 19, 2011
Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. Beauclerk AA, Cundliffe E Jan. 20, 1987
Structural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria. Macmaster R, Zelinskaya N, Savic M, Rankin CR, Conn GL Nov. 1, 2010
Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit. Husain N, Obranic S, Koscinski L, Seetharaman J, Babic F, Bujnicki JM, Maravic-Vlahovicek G, Sivaraman J March 1, 2011
Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification. Miles ZD, McCarty RM, Molnar G, Bandarian V May 3, 2011
Biochemical and genetic analysis of RNA cap guanine-N2 methyltransferases from Giardia lamblia and Schizosaccharomyces pombe. Hausmann S, Ramirez A, Schneider S, Schwer B, Shuman S Jan. 1, 2007
Unexpected accumulation of ncm(5)U and ncm(5)S(2) (U) in a trm9 mutant suggests an additional step in the synthesis of mcm(5)U and mcm(5)S(2)U. Chen C, Huang B, Anderson JT, Bystrom AS Jan. 1, 2011
Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. Mazauric MH, Dirick L, Purushothaman SK, Bjork GR, Lapeyre B June 11, 2010
The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC). Golovina AY, Sergiev PV, Golovin AV, Serebryakova MV, Demina I, Govorun VM, Dontsova OA June 1, 2009
Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Zebarjadian Y, King T, Fournier MJ, Clarke L, Carbon J Nov. 1, 1999
3-(3-amino-3-carboxypropyl)-5,6-Dihydrouridine is one of two novel post-transcriptional modifications in tRNA(Lys) (UUU) from Trypanosoma brucei. Krog JS, Espanol Y, Giessing AM, Dziergowska A, Malkiewicz A, Ribas de Pouplana L, Kirpekar F Dec. 1, 2011
The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi1191 in yeast 18S rRNA. Meyer B, Wurm JP, Kotter P, Leisegang MS, Schilling V, Buchhaupt M, Held M, Bahr U, Karas M, Heckel A, Bohnsack MT, Wohnert J, Entian KD March 1, 2011
Structure of wye (Yt base) and wyosine (Yt) from Torulopsis utilis phenylalanine transfer ribonucleic acid. Kasai H, Goto M, Ikeda K, Zama M, Mizuno Y, Takemura S, Matsuura S, Sugimoto T, Goto T Jan. 24, 1976
Mechanism of N-methylation by the tRNA m1G37 methyltransferase Trm5. Christian T, Lahoud G, Liu C, Hoffmann K, Perona JJ, Hou YM Dec. 1, 2010
Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase. Lee C, Kramer G, Graham DE, Appling DR Sept. 21, 2007
Isolation and characterization of the human tRNA-(N1G37) methyltransferase (TRM5) and comparison to the Escherichia coli TrmD protein. Brule H, Elliott M, Redlak M, Zehner ZE, Holmes WM July 20, 2004
Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4. Suzuki Y, Noma A, Suzuki T, Ishitani R, Nureki O May 1, 2009
Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. de Crecy-Lagard V, Brochier-Armanet C, Urbonavicius J, Fernandez B, Phillips G, Lyons B, Noma A, Alvarez S, Droogmans L, Armengaud J, Grosjean H Sept. 1, 2010
Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis. Goto-Ito S, Ishii R, Ito T, Shibata R, Fusatomi E, Sekine SI, Bessho Y, Yokoyama S Oct. 1, 2007
Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2. Umitsu M, Nishimasu H, Noma A, Suzuki T, Ishitani R, Nureki O Sept. 15, 2009
Biosynthesis and function of tRNA modifications in Archaea. Phillips G, de Crecy-Lagard V June 1, 2011
Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14. Menezes S, Gaston KW, Krivos KL, Apolinario EE, Reich NO, Sowers KR, Limbach PA, Perona JJ Sept. 1, 2011
Agmatidine, a modified cytidine in the anticodon of archaeal tRNA(Ile), base pairs with adenosine but not with guanosine. Mandal D, Kohrer C, Su D, Russell SP, Krivos K, Castleberry CM, Blum P, Limbach PA, Soll D, RajBhandary UL Jan. 16, 2010
Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Ikeuchi Y, Kimura S, Numata T, Nakamura D, Yokogawa T, Ogata T, Wada T, Suzuki T, Suzuki T April 1, 2010
Structural basis of tRNA agmatinylation essential for AUA codon decoding. Osawa T, Kimura S, Terasaka N, Inanaga H, Suzuki T, Numata T Nov. 1, 2011
The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre-rRNA processing in yeast. Tollervey D, Lehtonen H, Carmo-Fonseca M, Hurt EC March 1, 1991
A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing. Jansen R, Tollervey D, Hurt EC June 1, 1993
Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. Jansen RP, Hurt EC, Kern H, Lehtonen H, Carmo-Fonseca M, Lapeyre B, Tollervey D May 1, 1991
An intact Box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. Baserga SJ, Yang XD, Steitz JA Sept. 1, 1991
Human fibrillarin forms a sub-complex with splicing factor 2-associated p32, protein arginine methyltransferases, and tubulins alpha 3 and beta 1 that is independent of its association with preribosomal ribonucleoprotein complexes. Yanagida M, Hayano T, Yamauchi Y, Shinkawa T, Natsume T, Isobe T, Takahashi N Feb. 16, 2004
cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognized by autoimmune antisera. Aris JP, Blobel G Jan. 1, 1991
Structural organization of box C/D RNA-guided RNA methyltransferase. Ye K, Jia R, Lin J, Ju M, Peng J, Xu A, Zhang L Aug. 18, 2009
Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, Ye K Feb. 27, 2011
Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. Wang H, Boisvert D, Kim KK, Kim R, Kim SH Jan. 1, 2000
Expression, purification and preliminary X-ray analysis of a fibrillarin homolog from Methanococcus jannaschii, a hyperthermophile. Wang H, Yokota H, Kim R, Kim SH Feb. 1, 1999
Structure determination of fibrillarin from the hyperthermophilic archaeon Pyrococcus furiosus. Deng L, Starostina NG, Liu ZJ, Rose JP, Terns RM, Terns MP, Wang BC March 12, 2004
Alternative conformations of the archaeal Nop56/58-fibrillarin complex imply flexibility in box C/D RNPs. Oruganti S, Zhang Y, Li H, Robinson H, Terns MP, Terns RM, Yang W, Li H Aug. 31, 2007
Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Xue S, Wang R, Yang F, Terns RM, Terns MP, Zhang X, Maxwell ES, Li H Sept. 24, 2010
Structural and thermodynamic evidence for a stabilizing role of Nop5p in S-adenosyl-L-methionine binding to fibrillarin. Aittaleb M, Visone T, Fenley MO, Li H Oct. 1, 2004
Structure and function of archaeal box C/D sRNP core proteins. Aittaleb M, Rashid R, Chen Q, Palmer JR, Daniels CJ, Li H April 1, 2003
The crystal structure of the Methanocaldococcus jannaschii multifunctional L7Ae RNA-binding protein reveals an induced-fit interaction with the box C/D RNAs. Suryadi J, Tran EJ, Maxwell ES, Brown BA 2nd July 19, 2005
Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 A resolution. Hamma T, Ferre-D'Amare AR May 1, 2004
Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Rozhdestvensky TS, Tang TH, Tchirkova IV, Brosius J, Bachellerie JP, Huttenhofer A Jan. 1, 2003
Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Moore T, Zhang Y, Fenley MO, Li H May 1, 2004
Comparative analysis of the 15.5kD box C/D snoRNP core protein in the primitive eukaryote Giardia lamblia reveals unique structural and functional features. Biswas S, Buhrman G, Gagnon K, Mattos C, Brown BA 2nd, Maxwell ES April 12, 2011
Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Vidovic I, Nottrott S, Hartmuth K, Luhrmann R, Ficner R Dec. 1, 2000
Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Liu S, Li P, Dybkov O, Nottrott S, Hartmuth K, Luhrmann R, Carlomagno T, Wahl MC April 6, 2007
Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA. Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I, Ficner R, Luhrmann R Nov. 1, 1999
A novel Nop5-sRNA interaction that is required for efficient archaeal box C/D sRNP formation. Ghalei H, Hsiao HH, Urlaub H, Wahl MC, Watkins NJ Dec. 1, 2010
Box C/D snoRNP catalysed methylation is aided by additional pre-rRNA base-pairing. van Nues RW, Granneman S, Kudla G, Sloan KE, Chicken M, Tollervey D, Watkins NJ June 15, 2011
The ms2io6A37 modification of tRNA in Salmonella typhimurium regulates growth on citric acid cycle intermediates. Persson BC, Olafsson O, Lundgren HK, Hederstedt L, Bjork GR June 1, 1998
The wobble hypothesis revisited: uridine-5-oxyacetic acid is critical for reading of G-ending codons. Nasvall SJ, Chen P, Bjork GR Dec. 1, 2007
5-methoxyuridine: a new minor constituent located in the first position of the anticodon of tRNAAla, tRNAThr, and tRNAVal from Bacillus subtilis. Murao K, Hasegawa T, Ishikura H Oct. 1, 1976
Crystal structure of YecO from Haemophilus influenzae (HI0319) reveals a methyltransferase fold and a bound S-adenosylhomocysteine. Lim K, Zhang H, Tempczyk A, Bonander N, Toedt J, Howard A, Eisenstein E, Herzberg O Dec. 1, 2001
The identification of the tRNA substrates for the supK tRNA methylase. Pope WT, Brown A, Reeves RH March 1, 1978
Conserved cysteine residues of GidA are essential for biogenesis of 5-carboxymethylaminomethyluridine at tRNA anticodon. Osawa T, Ito K, Inanaga H, Nureki O, Tomita K, Numata T May 13, 2009
Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy. Meyer S, Bohme S, Kruger A, Steinhoff HJ, Klare JP, Wittinghofer A Oct. 1, 2009
Characterization of GTPase activity of TrmE, a member of a novel GTPase superfamily, from Thermotoga maritima. Yamanaka K, Hwang J, Inouye M Dec. 1, 2000
Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. Wang X, Yan Q, Guan MX Sept. 4, 2007
Mutations in MTO2 related to tRNA modification impair mitochondrial gene expression and protein synthesis in the presence of a paromomycin resistance mutation in mitochondrial 15 S rRNA. Yan Q, Li X, Faye G, Guan MX Aug. 12, 2005
Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L, Trempe JF, Matte A, Armengod ME, Cygler M Jan. 1, 2010
Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Ikeuchi Y, Shigi N, Kato J, Nishimura A, Suzuki T Feb. 6, 2006
High precision NMR structure of YhhP, a novel Escherichia coli protein implicated in cell division. Katoh E, Hatta T, Shindo H, Ishii Y, Yamada H, Mizuno T, Yamazaki T Nov. 24, 2000
Structural basis for sulfur relay to RNA mediated by heterohexameric TusBCD complex. Numata T, Fukai S, Ikeuchi Y, Suzuki T, Nureki O Jan. 1, 2006
Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, Kagamiyama H March 26, 2004
Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Suzuki T, Nagao A, Suzuki T Jan. 1, 2011
Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Suzuki T, Nagao A, Suzuki T May 1, 2011
Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity. Kimura S, Ikeuchi Y, Kitahara K, Sakaguchi Y, Suzuki T, Suzuki T Dec. 30, 2011
The conserved Wobble uridine tRNA thiolase Ctu1-Ctu2 is required to maintain genome integrity. Dewez M, Bauer F, Dieu M, Raes M, Vandenhaute J, Hermand D April 8, 2008
Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M, Schmidt A, Aebersold R, Boone C, Hofmann K, Peter M March 12, 2009
Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme. Karcher D, Bock R July 1, 2009
Arabidopsis tRNA adenosine deaminase arginine edits the wobble nucleotide of chloroplast tRNAArg(ACG) and is essential for efficient chloroplast translation. Delannoy E, Le Ret M, Faivre-Nitschke E, Estavillo GM, Bergdoll M, Taylor NL, Pogson BJ, Small I, Imbault P, Gualberto JM July 1, 2009
A-to-I and C-to-U editing within transfer RNAs. Su AA, Randau L Aug. 1, 2011
Determinants of tRNA editing and modification: Avoiding conundrums, affecting function. Paris Z, Fleming IM, Alfonzo JD Oct. 19, 2011
A cytidine deaminase edits C to U in transfer RNAs in Archaea. Randau L, Stanley BJ, Kohlway A, Mechta S, Xiong Y, Soll D May 1, 2009
Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis. Hamdane D, Argentini M, Cornu D, Myllykallio H, Skouloubris S, Hui-Bon-Hoa G, Golinelli-Pimpaneau B Oct. 21, 2011
A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis. Hamdane D, Guerineau V, Un S, Golinelli-Pimpaneau B June 14, 2011
Expression and purification of untagged and histidine-tagged folate-dependent tRNA:m5U54 methyltransferase from Bacillus subtilis. Hamdane D, Skouloubris S, Myllykallio H, Golinelli-Pimpaneau B Sept. 1, 2010
Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence. Haumont E, Droogmans L, Grosjean H Oct. 1, 1987
Enzymatic synthesis of Q nucleoside containing mannose in the anticodon of tRNA: isolation of a novel mannosyltransferase from a cell-free extract of rat liver. Okada N, Nishimura S Aug. 1, 1977
Determination of queuosine derivatives by reverse-phase liquid chromatography for the hypomodification study of Q-bearing tRNAs from various mammal liver cells. Costa A, Pais de Barros JP, Keith G, Baranowski W, Desgres J March 5, 2004
Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase. Nishimasu H, Ishitani R, Yamashita K, Iwashita C, Hirata A, Hori H, Nureki O May 19, 2009
Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Li S, Duan J, Li D, Yang B, Dong M, Ye K Nov. 15, 2011
New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA. Piekna-Przybylska D, Decatur WA, Fournier MJ March 1, 2007
Structure of the Shq1-Cbf5-Nop10-Gar1 complex and implications for H/ACA RNP biogenesis and dyskeratosis congenita. Li S, Duan J, Li D, Ma S, Ye K Dec. 14, 2011
Structural study of the H/ACA snoRNP components Nop10p and the 3' hairpin of U65 snoRNA. Khanna M, Wu H, Johansson C, Caizergues-Ferrer M, Feigon J Feb. 1, 2006
Box H/ACA small ribonucleoproteins. Kiss T, Fayet-Lebaron E, Jady BE March 12, 2010
The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification. Hamma T, Ferre-D'Amare AR Feb. 8, 2010
A single zinc ion is sufficient for an active Trypanosoma brucei tRNA editing deaminase. Spears JL, Rubio MA, Gaston KW, Wywial E, Strikoudis A, Bujnicki JM, Papavasiliou FN, Alfonzo JD June 10, 2011
The C-terminal end of the Trypanosoma brucei editing deaminase plays a critical role in tRNA binding. Ragone FL, Spears JL, Wohlgamuth-Benedum JM, Kreel N, Papavasiliou FN, Alfonzo JD July 1, 2011
An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Rubio MA, Pastar I, Gaston KW, Ragone FL, Janzen CJ, Cross GA, Papavasiliou FN, Alfonzo JD May 8, 2007
The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA. Chatterjee K, Blaby IK, Thiaville PC, Majumder M, Grosjean H, Yuan YA, Gupta R, de Crécy-Lagard V Jan. 24, 2012
Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs. Wurm JP, Griese M, Bahr U, Held M, Heckel A, Karas M, Soppa J, Wöhnert J Jan. 24, 2012
Crystal structure of Mj1640/DUF358 protein reveals a putative SPOUT-class RNA methyltransferase. Chen HY, Yuan YA Dec. 1, 2010
Discovery and characterization of tRNAIle lysidine synthetase (TilS). Suzuki T, Miyauchi K Feb. 21, 2010
Life without the essential bacterial tRNA Ile2-lysidine synthetase TilS: a case of tRNA gene recruitment in Bacillus subtilis. Fabret C, Dervyn E, Dalmais B, Guillot A, Marck C, Grosjean H, Noirot P May 1, 2011
Biogenesis of 2-agmatinylcytidine catalyzed by the dual protein and RNA kinase TiaS. Terasaka N, Kimura S, Osawa T, Numata T, Suzuki T Nov. 1, 2011
Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors. Shigi N, Sakaguchi Y, Asai S, Suzuki T, Watanabe K Dec. 17, 2008
Identification of two tRNA thiolation genes required for cell growth at extremely high temperatures. Shigi N, Sakaguchi Y, Suzuki T, Watanabe K May 19, 2006
Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. Palenchar PM, Buck CJ, Cheng H, Larson TJ, Mueller EG March 24, 2000
Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Kambampati R, Lauhon CT April 14, 2000
The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA. Mueller EG, Palenchar PM, Buck CJ Sept. 7, 2001
A paradigm for biological sulfur transfers via persulfide groups: a persulfide-disulfide-thiol cycle in 4-thiouridine biosynthesis. Wright CM, Palenchar PM, Mueller EG Nov. 21, 2002
Deduced RNA binding mechanism of ThiI based on structural and binding analyses of a minimal RNA ligand. Tanaka Y, Yamagata S, Kitago Y, Yamada Y, Chimnaronk S, Yao M, Tanaka I Aug. 1, 2009
Direct evidence for enzyme persulfide and disulfide intermediates during 4-thiouridine biosynthesis. Wright CM, Christman GD, Snellinger AM, Johnston MV, Mueller EG Aug. 7, 2006
Modifications Modulate Anticodon Loop Dynamics and Codon Recognition of E. coli tRNA(Arg1,2). Cantara WA, Bilbille Y, Kim J, Kaiser R, Leszczyńska G, Malkiewicz A, Agris PF Jan. 3, 2012
Thiobases in Escherchia coli Transfer RNA: 2-Thiocytosine and 5-Methylaminomethyl-2-thiouracil. Carbon J, David H, Studier MH Sept. 13, 1968
Iron-sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer. Fontecave M, Ollagnier-de-Choudens S June 15, 2008
A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. Bjork GR, Huang B, Persson OP, Bystrom AS Aug. 1, 2007
The yeast ribosome synthesis factor Emg1 is a novel member of the superfamily of alpha/beta knot fold methyltransferases. Leulliot N, Bohnsack MT, Graille M, Tollervey D, Van Tilbeurgh H Jan. 1, 2008
Overexpression, crystallization and preliminary X-ray crystallographic analysis of Pseudomonas aeruginosa MnmE, a GTPase involved in tRNA modification. Lee HH, Suh SW Aug. 1, 2010
RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon. Chimnaronk S, Suzuki T, Manita T, Ikeuchi Y, Yao M, Suzuki T, Tanaka I May 6, 2009
Synthesis of 2′-O-[(Triisopropylsilyl)oxy]methyl (= tom)-Protected Ribonucleoside Phosphoramidites Containing Various Nucleobase Analogues Porcher S, Pitsch S. Oct. 28, 2005
Site-selected introduction of modified purine and pyrimidine ribonucleosides into RNA by automated phosphoramidite chemistry. Agris PF, Malkiewicz A, Kraszewski A et al. Sept. 8, 1994
The synthesis of 2'-O-[(Triisopropylsilyl)oxy] methyl (TOM) phosphoramidites of methylated ribonucleosides (m1G, m2G, m22G, m1I, m3U, m4C, m6A, m62A) for use in automated RNA solid-phase synthesis HÖBARTNER Claudia ; KREUTZ Christoph ; FLECKER Elke ; OTTENSCHLÄGER Elke ; PILS Werner ; GRUBMAYR Karl ; MICURA Ronald ; May 1, 2003
Synthesis of the Anticodon Hairpin tRNAfMet Containing N-{[9-(β-D-Ribofuranosyl)-9H-purin-6-yl]carbamoyl}-L-threonine (=N6-{{[(1S,2R)-1-Carboxy-2-hydroxypropyl]amino}carbonyl}adenosine, t6A) Boudou, V., Langridge, J., Van Aerschot, A., Hendrix, C., Millar, A., Weiss, P. and Herdewijn, P. Jan. 19, 2000
Synthesis and Characterization of the Native Anticodon Domain of E. coli tRNALys:  Simultaneous Incorporation of Modified Nucleosides mnm5s2U, t6A, and Pseudouridine Using Phosphoramidite Chemistry Mallikarjun Sundaram, Pamela F. Crain, and Darrell R. Davis July 8, 2000
Synthesis of the tRNALys,3 Anticodon Stem-Loop Domain Containing the Hypermodified ms2t6A Nucleoside Bajji AC, Davis DR. June 18, 2002
An Improved Synthesis of Inosine 3′-Phosphoramidite Jasenka Matulic-Adamic, Leonid Beigelman Feb. 13, 2000
Synthesis of a 3-methyluridine phosphoramidite to investigate the role of methylation in a ribosomal RNA hairpin. Chui HM, Meroueh M, Scaringe SA, Chow CS Jan. 1, 2002
Synthesis of helix 69 of Escherichia coli 23S rRNA containing its natural modified nucleosides, m(3)Psi and Psi. Chui HM, Desaulniers JP, Scaringe SA, Chow CS Dec. 13, 2002
Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable. O'Connor M, Lee WM, Mankad A, Squires CL, Dahlberg AE Jan. 1, 2001
Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Kumar RK, Davis DR March 15, 1997
Solid phase synthesis of the 5'-half of the initiator t-RNA from B. subtilis. Chaix C, Duplaa AM, Molko D, Teoule R Sept. 25, 1989
Site-directed cleavage of RNA. Shibahara S, Mukai S, Nishihara T, Inoue H, Ohtsuka E, Morisawa H June 11, 1987
Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides. Inoue H, Hayase Y, Imura A, Iwai S, Miura K, Ohtsuka E Aug. 11, 1987
Synthesis of N-Methylated Ribonucleosides for RNA Synthesis Markus Beier, Wolfgang Pfleiderer Aug. 5, 2003
The synthesis of oligoribonucleotides containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines via post-synthetic modification of precursor oligomers. Kierzek E, Kierzek R Aug. 1, 2003
Introduction of hypermodified nucleotides in RNA. Davis DR, Bajji AC Jan. 1, 2005
Synthesis and Incorporation of 2′-O-Methyl-Pseudouridine into Oligonucleotides Bruce S. Rossa, Guillermo Vasqueza, Sheri Manalilia, Elena Lesnika, Richard Griffeya Jan. 1, 1997
New and convenient protection system for pseudouridine, highly suitable for solid-phase oligoribonucleotide synthesis Uwe Pieles , Barbro Beijer , Kerstin Bohmann , Susan Weston , Samantha O'Loughlin , Viviane Adam and Brian S. Sproat Jan. 1, 1994
Chemical synthesis of a biologically active natural tRNA with its minor bases. Gasparutto D, Livache T, Bazin H, Duplaa AM, Guy A, Khorlin A, Molko D, Roget A, Teoule R Oct. 11, 1992
Chemical synthesis of RNA including 5-taurinomethyluridine 1. Toshihiko Ogata and 2. Takeshi Wada Nov. 1, 2006
Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Meroueh M, Grohar PJ, Qiu J, SantaLucia J Jr, Scaringe SA, Chow CS May 15, 2000
A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Kowtoniuk WE, Shen Y, Heemstra JM, Agarwal I, Liu DR May 12, 2009
LC/MS analysis of cellular RNA reveals NAD-linked RNA. Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR Dec. 1, 2009
Nucleotide sequence of nuclear 5.4 S RNA of mouse cells. Kato N, Harada F June 16, 1984
Mutational analysis of the Saccharomyces cerevisiae ABD1 gene: cap methyltransferase activity is essential for cell growth. Mao X, Schwer B, Shuman S Jan. 1, 1996
Structure-function analysis of the mRNA cap methyltransferase of Saccharomyces cerevisiae. Wang SP, Shuman S June 6, 1997
Dynamic association of capping enzymes with transcribing RNA polymerase II. Schroeder SC, Schwer B, Shuman S, Bentley D Oct. 1, 2000
Genetic interactions show the importance of rRNA modification machinery for the role of Rps15p during ribosome biogenesis in S. cerevisiae. Bellemer C, Chabosseau P, Gallardo F, Gleizes PE, Stahl G Jan. 1, 2010
Trm112 Is Required for Bud23-Mediated Methylation of the 18S rRNA at Position G1575. Figaro S, Wacheul L, Schillewaert S, Graille M, Huvelle E, Mongeard R, Zorbas C, Lafontaine DL, Heurgue-Hamard V June 1, 2012
Isolation of temperature-sensitive mutants for mRNA capping enzyme in Saccharomyces cerevisiae. Yamagishi M, Mizumoto K, Ishihama A Nov. 15, 1995
Messenger RNA guanylyltransferase from Saccharomyces cerevisiae. Large scale purification, subunit functions, and subcellular localization. Itoh N, Yamada H, Kaziro Y, Mizumoto K Jan. 15, 1987
Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus. Gu M, Rajashankar KR, Lima CD Jan. 10, 2010
The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo. Takase Y, Takagi T, Komarnitsky PB, Buratowski S Dec. 1, 2000
Molecular determinants of dihydrouridine synthase activity. Savage DF, de Crecy-Lagard V, Bishop AC Oct. 2, 2006
Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. Blaise M, Olieric V, Sauter C, Lorber B, Roy B, Karmakar S, Banerjee R, Becker HD, Kern D Sept. 19, 2008
Structural insights into mechanisms of the small RNA methyltransferase HEN1. Huang Y, Ji L, Huang Q, Vassylyev DG, Chen X, Ma JB Oct. 8, 2009
Kinetic and functional analysis of the small RNA methyltransferase HEN1: the catalytic domain is essential for preferential modification of duplex RNA. Vilkaitis G, Plotnikova A, Klimasauskas S Oct. 1, 2010
Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Li J, Yang Z, Yu B, Liu J, Chen X Aug. 23, 2005
Methylation as a crucial step in plant microRNA biogenesis. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X Jan. 11, 2005
siRNAs compete with miRNAs for methylation by HEN1 in Arabidopsis. Yu B, Bi L, Zhai J, Agarwal M, Li S, Wu Q, Ding SW, Meyers BC, Vaucheret H, Chen X Sept. 1, 2010
HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Yang Z, Ebright YW, Yu B, Chen X Jan. 1, 2006
Yeast targets for mRNA methylation. Bodi Z, Button JD, Grierson D, Fray RG Sept. 1, 2010
Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon. Chimnaronk S, Forouhar F, Sakai J, Yao M, Tron CM, Atta M, Fontecave M, Hunt JF, Tanaka I June 16, 2009
RNA-protein mutually induced fit: structure of Escherichia coli isopentenyl-tRNA transferase in complex with tRNA(Phe). Seif E, Hallberg BM March 13, 2009
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: a binding mechanism for recombinant enzyme. Moore JA, Poulter CD Feb. 21, 1997
Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein. Pierrel F, Bjork GR, Fontecave M, Atta M April 19, 2002
Evidence that the folate-dependent proteins YgfZ and MnmEG have opposing effects on growth and on activity of the iron-sulfur enzyme MiaB. Waller JC, Ellens KW, Hasnain G, Alvarez S, Rocca JR, Hanson AD Feb. 1, 2012
TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. Anantharaman V, Koonin EV, Aravind L April 13, 2001
Enzymology of tRNA modification in the bacterial MnmEG pathway. Armengod ME, Moukadiri I, Prado S, Ruiz-Partida R, Benitez-Paez A, Villarroya M, Lomas R, Garzon MJ, Martinez-Zamora A, Meseguer S, Navarro-Gonzalez C July 1, 2012
Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Tolerico LH, Benko AL, Aris JP, Stanford DR, Martin NC, Hopper AK Feb. 1, 1999
Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases. Lamichhane TN, Blewett NH, Maraia RJ Oct. 1, 2011
Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2'-O-methyltransferases. Feder M, Pas J, Wyrwicz LS, Bujnicki JM Feb. 2, 2003
Implications of a functional large ribosomal RNA with only three modified nucleotides. Sirum-Connolly K, Peltier JM, Crain PF, McCloskey JA, Mason TL Jan. 1, 1995
Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Noma A, Sakaguchi Y, Suzuki T March 1, 2009
A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. Huang B, Lu J, Bystrom AS Oct. 1, 2008
Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. Nakai Y, Nakai M, Hayashi H Oct. 10, 2008
Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Thomas SR, Keller CA, Szyk A, Cannon JR, Laronde-Leblanc NA March 1, 2011
Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid. Brand RC, Klootwijk J, Planta RJ, Maden BE Feb. 1, 1978
Phylogenetic analysis of the eukaryotic RNA (cytosine-5)-methyltransferases. Pavlopoulou A, Kossida S April 1, 2009
RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine. King MY, Redman KL Sept. 17, 2002
Psi35 in the branch site recognition region of U2 small nuclear RNA is important for pre-mRNA splicing in Saccharomyces cerevisiae. Yang C, McPheeters DS, Yu YT Jan. 25, 2005
X-ray structures of U2 snRNA-branchpoint duplexes containing conserved pseudouridines. Lin Y, Kielkopf CL May 20, 2008
Different mechanisms for pseudouridine formation in yeast 5S and 5.8S rRNAs. Decatur WA, Schnare MN May 1, 2008
RNA sequence and two-dimensional structure features required for efficient substrate modification by the Saccharomyces cerevisiae RNA:{Psi}-synthase Pus7p. Urban A, Behm-Ansmant I, Branlant C, Motorin Y Jan. 27, 2009
Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine. Reader JS, Metzgar D, Schimmel P, de Crecy-Lagard V Jan. 20, 2004
Methylation of 23S rRNA nucleotide G745 is a secondary function of the RlmAI methyltransferase. Liu M, Novotny GW, Douthwaite S Nov. 1, 2004
Mutagenesis of the modified bases, m(5)U1939 and psi2504, in Escherichia coli 23S rRNA. Persaud C, Lu Y, Vila-Sanjurjo A, Campbell JL, Finley J, O'Connor M Jan. 5, 2010
Methylated 23S rRNA nucleotide m2G1835 of Escherichia coli ribosome facilitates subunit association. Osterman IA, Sergiev PV, Tsvetkov PO, Makarov AA, Bogdanov AA, Dontsova OA April 1, 2011
Identification of pseudouridine methyltransferase in Escherichia coli. Ero R, Peil L, Liiv A, Remme J Oct. 1, 2008
Specificity and kinetics of 23S rRNA modification enzymes RlmH and RluD. Ero R, Leppik M, Liiv A, Remme J Nov. 1, 2010
5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Motorin Y, Lyko F, Helm M March 1, 2010
Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA. Wang KT, Desmolaize B, Nan J, Zhang XW, Li LF, Douthwaite S, Su XD June 1, 2012
Radical-mediated enzymatic methylation: a tale of two SAMS. Zhang Q, van der Donk WA, Liu W April 17, 2012
Cfr and RlmN contain a single [4Fe-4S] cluster, which directs two distinct reactivities for S-adenosylmethionine: methyl transfer by SN2 displacement and radical generation. Grove TL, Radle MI, Krebs C, Booker SJ Dec. 14, 2011
Pseudouridines and pseudouridine synthases of the ribosome. Ofengand J, Malhotra A, Remme J, Gutgsell NS, Del Campo M, Jean-Charles S, Peil L, Kaya Y Jan. 1, 2001
Crystal structures of the catalytic domains of pseudouridine synthases RluC and RluD from Escherichia coli. Mizutani K, Machida Y, Unzai S, Park SY, Tame JR April 20, 2004
Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA. Huang L, Ku J, Pookanjanatavip M, Gu X, Wang D, Greene PJ, Santi DV Nov. 10, 1998
Crystal structure of the catalytic domain of RluD, the only rRNA pseudouridine synthase required for normal growth of Escherichia coli. Del Campo M, Ofengand J, Malhotra A Jan. 1, 2004
Substrate specificity of the pseudouridine synthase RluD in Escherichia coli. Leppik M, Peil L, Kipper K, Liiv A, Remme J Nov. 1, 2007
Crystal structure of the RluD pseudouridine synthase catalytic module, an enzyme that modifies 23S rRNA and is essential for normal cell growth of Escherichia coli. Sivaraman J, Iannuzzi P, Cygler M, Matte A Feb. 2, 2004
Crystal structure of an RluF-RNA complex: a base-pair rearrangement is the key to selectivity of RluF for U2604 of the ribosome. Alian A, DeGiovanni A, Griner SL, Finer-Moore JS, Stroud RM May 15, 2009
Structural bases for 16 S rRNA methylation catalyzed by ArmA and RmtB methyltransferases. Schmitt E, Galimand M, Panvert M, Courvalin P, Mechulam Y May 8, 2009
Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis. Boehringer D, O'Farrell HC, Rife JP, Ban N March 23, 2012
Site-directed mutants of 16S rRNA reveal important RNA domains for KsgA function and 30S subunit assembly. Desai PM, Culver GM, Rife JP Jan. 8, 2011
Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Connolly K, Rife JP, Culver G Dec. 1, 2008
Control of substrate specificity by a single active site residue of the KsgA methyltransferase. O'Farrell HC, Musayev FN, Scarsdale JN, Rife JP Feb. 10, 2012
Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3' end of 16S ribosomal RNA of Escherichia coli. IV. The effect of the methylgroups on ribosomal subunit interaction. Poldermans B, Bakker H, Van Knippenberg PH Feb. 11, 1980
The DIM1 gene responsible for the conserved m6(2)Am6(2)A dimethylation in the 3'-terminal loop of 18 S rRNA is essential in yeast. Lafontaine D, Delcour J, Glasser AL, Desgres J, Vandenhaute J Aug. 19, 1994
Comprehensive phylogenetic analysis of evolutionarily conserved rRNA adenine dimethyltransferase suggests diverse bacterial contributions to the nucleus-encoded plastid proteome. Park AK, Kim H, Jin HJ Jan. 1, 2009
Dim2p, a KH-domain protein required for small ribosomal subunit synthesis. Vanrobays E, Gelugne JP, Caizergues-Ferrer M, Lafontaine DL April 1, 2004
Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Lafontaine DL, Preiss T, Tollervey D April 1, 1998
A paradigm for local conformational control of function in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases. Weitzmann C, Tumminia SJ, Boublik M, Ofengand J Dec. 1, 1991
Properties of small rRNA methyltransferase RsmD: Mutational and kinetic study. Sergeeva OV, Prokhorova IV, Ordabaev Y, Tsvetkov PO, Sergiev PV, Bogdanov AA, Makarov AA, Dontsova OA June 1, 2012
The aminoglycoside resistance methyltransferase Sgm impedes RsmF methylation at an adjacent rRNA nucleotide in the ribosomal A site. Cubrilo S, Babic F, Douthwaite S, Maravic Vlahovicek G Aug. 1, 2009
Regulation of expression and catalytic activity of Escherichia coli RsmG methyltransferase. Benitez-Paez A, Villarroya M, Armengod ME April 1, 2012
Deletion of gene encoding methyltransferase (gidB) confers high-level antimicrobial resistance in Salmonella. Mikheil DM, Shippy DC, Eakley NM, Okwumabua OE, Fadl AA April 1, 2012
Influence of phylogeny on posttranscriptional modification of rRNA in thermophilic prokaryotes: the complete modification map of 16S rRNA of Thermus thermophilus. Guymon R, Pomerantz SC, Crain PF, McCloskey JA April 18, 2006
Structure of the 16S rRNA pseudouridine synthase RsuA bound to uracil and UMP. Sivaraman J, Sauve V, Larocque R, Stura EA, Schrag JD, Cygler M, Matte A May 1, 2002
The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. El Yacoubi B, Lyons B, Cruz Y, Reddy R, Nordin B, Agnelli F, Williamson JR, Schimmel P, Swairjo MA, de Crecy-Lagard V May 1, 2009
The Sua5 protein is essential for normal translational regulation in yeast. Lin CA, Ellis SR, True HL Feb. 1, 2010
Doing it in reverse: 3'-to-5' polymerization by the Thg1 superfamily. Jackman JE, Gott JM, Gray MW May 1, 2012
Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Ozanick SG, Bujnicki JM, Sem DS, Anderson JT Jan. 1, 2007
Structural comparison of tRNA m(1)A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions. Guelorget A, Barraud P, Tisne C, Golinelli-Pimpaneau B Jan. 1, 2011
The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Sasarman F, Antonicka H, Horvath R, Shoubridge EA Dec. 1, 2011
YrdC exhibits properties expected of a subunit for a tRNA threonylcarbamoyl transferase. Harris KA, Jones V, Bilbille Y, Swairjo MA, Agris PF Sept. 1, 2011
Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. Deutsch C, El Yacoubi B, de Crecy-Lagard V, Iwata-Reuyl D April 20, 2012
Analysis of deletion phenotypes and GFP fusions of 21 novel Saccharomyces cerevisiae open reading frames. Brachat A, Liebundguth N, Rebischung C, Lemire S, Scharer F, Hoepfner D, Demchyshyn V, Howald I, Dusterhoft A, Mostl D, Pohlmann R, Kotter P, Hall MN, Wach A, Philippsen P Jan. 1, 2000
Crystal structure of archaeosine tRNA-guanine transglycosylase. Ishitani R, Nureki O, Fukai S, Kijimoto T, Nameki N, Watanabe M, Kondo H, Sekine M, Okada N, Nishimura S, Yokoyama S May 3, 2002
Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme. Ishitani R, Nureki O, Nameki N, Okada N, Nishimura S, Yokoyama S May 2, 2003
Catalysis by the second class of tRNA(m1G37) methyl transferase requires a conserved proline. Christian T, Evilia C, Hou YM June 20, 2006
Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Goto-Ito S, Ito T, Kuratani M, Bessho Y, Yokoyama S Oct. 1, 2009
Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA. Kuratani M, Bessho Y, Nishimoto M, Grosjean H, Yokoyama S Feb. 25, 2008
The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP. Renalier MH, Joseph N, Gaspin C, Thebault P, Mougin A July 1, 2005
The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity. Walbott H, Leulliot N, Grosjean H, Golinelli-Pimpaneau B Sept. 1, 2008
Acquisition of a bacterial RumA-type tRNA(uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer. Urbonavicius J, Auxilien S, Walbott H, Trachana K, Golinelli-Pimpaneau B, Brochier-Armanet C, Grosjean H Feb. 1, 2008
The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya. Hecker A, Graille M, Madec E, Gadelle D, Le Cam E, van Tilbergh H, Forterre P Jan. 1, 2009
The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. Haile JD, Kennelly PJ July 1, 2011
Structure-function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life. Facchin S, Lopreiato R, Stocchetto S, Arrigoni G, Cesaro L, Marin O, Carignani G, Pinna LA June 1, 2002
Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. Henras AK, Capeyrou R, Henry Y, Caizergues-Ferrer M Nov. 1, 2004
Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA. Liang B, Zhou J, Kahen E, Terns RM, Terns MP, Li H July 1, 2009
Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. Mao DY, Neculai D, Downey M, Orlicky S, Haffani YZ, Ceccarelli DF, Ho JS, Szilard RK, Zhang W, Ho CS, Wan L, Fares C, Rumpel S, Kurinov I, Arrowsmith CH, Durocher D, Sicheri F Oct. 24, 2008
A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, Galicia S, Guillard S, Partington M, Zubko MK, Krogan NJ, Emili A, Greenblatt JF, Harrington L, Lydall D, Durocher D March 24, 2006
Active site mapping and substrate specificity of bacterial Hen1, a manganese-dependent 3' terminal RNA ribose 2'O-methyltransferase. Jain R, Shuman S March 1, 2011
Structural and biochemical insights into 2'-O-methylation at the 3'-terminal nucleotide of RNA by Hen1. Mui Chan C, Zhou C, Brunzelle JS, Huang RH Oct. 20, 2009
Bacterial Hen1 is a 3' terminal RNA ribose 2'-O-methyltransferase component of a bacterial RNA repair cassette. Jain R, Shuman S Jan. 1, 2010
Probing the substrate specificity of the bacterial Pnkp/Hen1 RNA repair system using synthetic RNAs. Zhang C, Chan CM, Wang P, Huang RH Jan. 1, 2012
Reconstituting bacterial RNA repair and modification in vitro. Chan CM, Zhou C, Huang RH Oct. 9, 2009
An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro. Hecker A, Leulliot N, Gadelle D, Graille M, Justome A, Dorlet P, Brochier C, Quevillon-Cheruel S, Le Cam E, van Tilbeurgh H, Forterre P Jan. 1, 2007
The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. Srinivasan M, Mehta P, Yu Y, Prugar E, Koonin EV, Karzai AW, Sternglanz R March 2, 2011
A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. El Yacoubi B, Hatin I, Deutsch C, Kahveci T, Rousset JP, Iwata-Reuyl D, Murzin AG, de Crecy-Lagard V March 2, 2011
Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs. Daugeron MC, Lenstra TL, Frizzarin M, El Yacoubi B, Liu X, Baudin-Baillieu A, Lijnzaad P, Decourty L, Saveanu C, Jacquier A, Holstege FC, de Crecy-Lagard V, van Tilbeurgh H, Libri D Aug. 1, 2011
Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex. Hecker A, Lopreiato R, Graille M, Collinet B, Forterre P, Libri D, van Tilbeurgh H Sept. 3, 2008
Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis. Anton BP, Russell SP, Vertrees J, Kasif S, Raleigh EA, Limbach PA, Roberts RJ Oct. 1, 2010
MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Hernandez HL, Pierrel F, Elleingand E, Garcia-Serres R, Huynh BH, Johnson MK, Fontecave M, Atta M May 1, 2007
MiaB protein from Thermotoga maritima. Characterization of an extremely thermophilic tRNA-methylthiotransferase. Pierrel F, Hernandez HL, Johnson MK, Fontecave M, Atta M Aug. 8, 2003
S-Adenosylmethionine-dependent radical-based modification of biological macromolecules. Atta M, Mulliez E, Arragain S, Forouhar F, Hunt JF, Fontecave M Dec. 1, 2010
Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Golovko A, Sitbon F, Tillberg E, Nicander B May 1, 2002
Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T Oct. 31, 2006
Cloning of a human tRNA isopentenyl transferase. Golovko A, Hjalm G, Sitbon F, Nicander B Nov. 27, 2000
Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. Arragain S, Handelman SK, Forouhar F, Wei FY, Tomizawa K, Hunt JF, Douki T, Fontecave M, Mulliez E, Atta M Sept. 10, 2010
Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. Wei FY, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, Fujimura A, Matsui H, Atta M, Michiue H, Fontecave M, Yamagata K, Suzuki T, Tomizawa K Sept. 1, 2011
Backbone resonance assignments of the 48 kDa dimeric putative 18S rRNA-methyltransferase Nep1 from Methanocaldococcus jannaschii. Wurm JP, Duchardt E, Meyer B, Leal BZ, Kotter P, Entian KD, Wohnert J Dec. 1, 2009
The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Wurm JP, Meyer B, Bahr U, Held M, Frolow O, Kotter P, Engels JW, Heckel A, Karas M, Entian KD, Wohnert J April 1, 2010
Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases. Auxilien S, Rasmussen A, Rose S, Brochier-Armanet C, Husson C, Fourmy D, Grosjean H, Douthwaite S Feb. 1, 2011
Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance. Oberto J, Breuil N, Hecker A, Farina F, Brochier-Armanet C, Culetto E, Forterre P Sept. 1, 2009
Interaction of the tylosin-resistance methyltransferase RlmA II at its rRNA target differs from the orthologue RlmA I. Douthwaite S, Jakobsen L, Yoshizawa S, Fourmy D May 16, 2008
Recognition elements in rRNA for the tylosin resistance methyltransferase RlmA(II). Lebars I, Husson C, Yoshizawa S, Douthwaite S, Fourmy D Sept. 14, 2007
The tylosin-resistance methyltransferase RlmA(II) (TlrB) modifies the N-1 position of 23S rRNA nucleotide G748. Douthwaite S, Crain PF, Liu M, Poehlsgaard J April 9, 2004
A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA. Desmolaize B, Fabret C, Bregeon D, Rose S, Grosjean H, Douthwaite S Nov. 1, 2011
Cloning and characterization of the 23S RNA pseudouridine 2633 synthase from Bacillus subtilis. Niu L, Lane BG, Ofengand J Feb. 12, 1999
Structural basis for binding of RNA and cofactor by a KsgA methyltransferase. Tu C, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X March 11, 2009
A mitochondrial rRNA dimethyladenosine methyltransferase in Arabidopsis. Richter U, Kuhn K, Okada S, Brennicke A, Weihe A, Borner T Jan. 1, 2010
Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2. Cotney J, Shadel GS Nov. 1, 2006
Binding of adenosine-based ligands to the MjDim1 rRNA methyltransferase: implications for reaction mechanism and drug design. O'Farrell HC, Musayev FN, Scarsdale JN, Rife JP March 30, 2010
Structural rearrangements in the active site of the Thermus thermophilus 16S rRNA methyltransferase KsgA in a binary complex with 5'-methylthioadenosine. Demirci H, Belardinelli R, Seri E, Gregory ST, Gualerzi C, Dahlberg AE, Jogl G May 1, 2009
Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance. Ochi K, Kim JY, Tanaka Y, Wang G, Masuda K, Nanamiya H, Okamoto S, Tokuyama S, Adachi Y, Kawamura F Feb. 1, 2009
Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. Demirci H, Larsen LH, Hansen T, Rasmussen A, Cadambi A, Gregory ST, Kirpekar F, Jogl G Aug. 1, 2010
Crystal structure of the Thermus thermophilus 16 S rRNA methyltransferase RsmC in complex with cofactor and substrate guanosine. Demirci H, Gregory ST, Dahlberg AE, Jogl G Sept. 26, 2008
Structural and functional characterization of Rv2966c protein reveals an RsmD-like methyltransferase from Mycobacterium tuberculosis and the role of its N-terminal domain in target recognition. Kumar A, Saigal K, Malhotra K, Sinha KM, Taneja B June 3, 2011
Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG. Gregory ST, Demirci H, Belardinelli R, Monshupanee T, Gualerzi C, Dahlberg AE, Jogl G Sept. 1, 2009
Crystal structure of Sulfolobus tokodaii Sua5 complexed with L-threonine and AMPPNP. Kuratani M, Kasai T, Akasaka R, Higashijima K, Terada T, Kigawa T, Shinkai A, Bessho Y, Yokoyama S July 1, 2011
Crystal structure of tRNA adenosine deaminase (TadA) from Aquifex aeolicus. Kuratani M, Ishii R, Bessho Y, Fukunaga R, Sengoku T, Shirouzu M, Sekine S, Yokoyama S April 22, 2005
Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Losey HC, Ruthenburg AJ, Verdine GL Jan. 1, 2006
Sequence analysis and overexpression of the Zymomonas mobilis tgt gene encoding tRNA-guanine transglycosylase: purification and biochemical characterization of the enzyme. Reuter K, Ficner R Sept. 1, 1995
Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. Romier C, Reuter K, Suck D, Ficner R June 3, 1996
Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase to elucidate the role of serine 103 for enzymatic activity. Gradler U, Ficner R, Garcia GA, Stubbs MT, Klebe G, Reuter K July 2, 1999
Substrate tRNA recognition mechanism of a multisite-specific tRNA methyltransferase, Aquifex aeolicus Trm1, based on the X-ray crystal structure. Awai T, Ochi A, Ihsanawati, Sengoku T, Hirata A, Bessho Y, Yokoyama S, Hori H Oct. 7, 2011
Aquifex aeolicus tRNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes transfer of methyl groups not only to guanine 26 but also to guanine 27 in tRNA. Awai T, Kimura S, Tomikawa C, Ochi A, Ihsanawati, Bessho Y, Yokoyama S, Ohno S, Nishikawa K, Yokogawa T, Suzuki T, Hori H July 31, 2009
Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii. Ihsanawati, Nishimoto M, Higashijima K, Shirouzu M, Grosjean H, Bessho Y, Yokoyama S Nov. 21, 2008
Crystal structure of Methanocaldococcus jannaschii Trm4 complexed with sinefungin. Kuratani M, Hirano M, Goto-Ito S, Itoh Y, Hikida Y, Nishimoto M, Sekine S, Bessho Y, Ito T, Grosjean H, Yokoyama S Aug. 20, 2010
THUMP from archaeal tRNA:m22G10 methyltransferase, a genuine autonomously folding domain. Gabant G, Auxilien S, Tuszynska I, Locard M, Gajda MJ, Chaussinand G, Fernandez B, Dedieu A, Grosjean H, Golinelli-Pimpaneau B, Bujnicki JM, Armengaud J Jan. 1, 2006
N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethionine-dependent methyltransferase, conserved in Archaea and Eukaryota. Armengaud J, Urbonavicius J, Fernandez B, Chaussinand G, Bujnicki JM, Grosjean H Aug. 27, 2004
YibK is the 2'-O-methyltransferase TrmL that modifies the wobble nucleotide in Escherichia coli tRNA(Leu) isoacceptors. Benitez-Paez A, Villarroya M, Douthwaite S, Gabaldon T, Armengod ME Nov. 1, 2010
The open reading frame TTC1157 of Thermus thermophilus HB27 encodes the methyltransferase forming N(2)-methylguanosine at position 6 in tRNA. Roovers M, Oudjama Y, Fislage M, Bujnicki JM, Versees W, Droogmans L April 1, 2012
Conformational change of pseudouridine 55 synthase upon its association with RNA substrate. Phannachet K, Huang RH Jan. 1, 2004
Conserved network of proteins essential for bacterial viability. Handford JI, Ize B, Buchanan G, Butland GP, Greenblatt J, Emili A, Palmer T Aug. 1, 2009
Effects on transcription of mutations in ygjD, yeaZ, and yjeE genes, which are involved in a universal tRNA modification in Escherichia coli. Hashimoto C, Sakaguchi K, Taniguchi Y, Honda H, Oshima T, Ogasawara N, Kato J Nov. 1, 2011
Structural analysis of the essential resuscitation promoting factor YeaZ suggests a mechanism of nucleotide regulation through dimer reorganization. Aydin I, Saijo-Hamano Y, Namba K, Thomas C, Roujeinikova A Jan. 1, 2011
Structure of an essential bacterial protein YeaZ (TM0874) from Thermotoga maritima at 2.5 A resolution. Xu Q, McMullan D, Jaroszewski L, Krishna SS, Elsliger MA, Yeh AP, Abdubek P, Astakhova T, Axelrod HL, Carlton D, Chiu HJ, Clayton T, Duan L, Feuerhelm J, Grant J, Han GW, Jin KK, Klock HE, Knuth MW, Miller MD, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, van den Bedem H, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA Oct. 1, 2010
The structure of the hypothetical protein smu.1377c from Streptococcus mutans suggests a role in tRNA modification. Fu TM, Liu X, Li L, Su XD July 1, 2010
The ATPase activity of an 'essential' Bacillus subtilis enzyme, YdiB, is required for its cellular function and is modulated by oligomerization. Karst JC, Foucher AE, Campbell TL, Di Guilmi AM, Stroebel D, Mangat CS, Brown ED, Jault JM March 1, 2009
Known bioactive small molecules probe the function of a widely conserved but enigmatic bacterial ATPase, YjeE. Mangat CS, Brown ED Dec. 22, 2008
Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Brown ED Dec. 1, 2005
The methyl group of the N6-methyl-N6-threonylcarbamoyladenosine in tRNA of Escherichia coli modestly improves the efficiency of the tRNA. Qian Q, Curran JF, Bjork GR April 1, 1998
Biosynthesis of 7-deazaguanosine-modified tRNA nucleosides: a new role for GTP cyclohydrolase I. Phillips G, El Yacoubi B, Lyons B, Alvarez S, Iwata-Reuyl D, de Crecy-Lagard V Dec. 1, 2008
The deazapurine biosynthetic pathway revealed: in vitro enzymatic synthesis of PreQ(0) from guanosine 5'-triphosphate in four steps. McCarty RM, Somogyi A, Lin G, Jacobsen NE, Bandarian V May 12, 2009
Genetic analysis identifies a function for the queC (ybaX) gene product at an initial step in the queuosine biosynthetic pathway in Escherichia coli. Gaur R, Varshney U Oct. 1, 2005
Escherichia coli QueD is a 6-carboxy-5,6,7,8-tetrahydropterin synthase. McCarty RM, Somogyi A, Bandarian V March 24, 2009
Functional promiscuity of the COG0720 family. Phillips G, Grochowski LL, Bonnett S, Xu H, Bailly M, Blaby-Haas C, El Yacoubi B, Iwata-Reuyl D, White RH, de Crecy-Lagard V Feb. 20, 2012
Crystallization and preliminary X-ray characterization of queD from Bacillus subtilis, an enzyme involved in queuosine biosynthesis. Cicmil N, Shi L Jan. 1, 2008
Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. Sekiya T, Adachi S, Kohu K, Yamada T, Higuchi O, Furukawa Y, Nakamura Y, Nakamura T, Tashiro K, Kuhara S, Ohwada S, Akiyama T Jan. 20, 2004
Mechanistic studies of Bacillus subtilis QueF, the nitrile oxidoreductase involved in queuosine biosynthesis. Lee BW, Van Lanen SG, Iwata-Reuyl D Nov. 6, 2007
Cloning and characterization of tRNA (m1A58) methyltransferase (TrmI) from Thermus thermophilus HB27, a protein required for cell growth at extreme temperatures. Droogmans L, Roovers M, Bujnicki JM, Tricot C, Hartsch T, Stalon V, Grosjean H April 15, 2003
Crystal structure of Thermus thermophilus tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA. Barraud P, Golinelli-Pimpaneau B, Atmanene C, Sanglier S, Van Dorsselaer A, Droogmans L, Dardel F, Tisne C March 21, 2008
Mycobacterium tuberculosis Rv2118c codes for a single-component homotetrameric m1A58 tRNA methyltransferase. Varshney U, Ramesh V, Madabushi A, Gaur R, Subramanya HS, RajBhandary UL Jan. 1, 2004
Crystal structure of Rv2118c: an AdoMet-dependent methyltransferase from Mycobacterium tuberculosis H37Rv. Gupta A, Kumar PH, Dineshkumar TK, Varshney U, Subramanya HS Sept. 14, 2001
Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification. Pastore C, Topalidou I, Forouhar F, Yan AC, Levy M, Hunt JF Feb. 13, 2012
Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Fu D, Brophy JA, Chan CT, Atmore KA, Begley U, Paules RS, Dedon PC, Begley TJ, Samson LD May 1, 2010
ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. van den Born E, Vagbo CB, Songe-Moller L, Leihne V, Lien GF, Leszczynska G, Malkiewicz A, Krokan HE, Kirpekar F, Klungland A, Falnes PO Jan. 1, 2011
Actin-binding protein ABP140 is a methyltransferase for 3-methylcytidine at position 32 of tRNAs in Saccharomyces cerevisiae. Noma A, Yi S, Katoh T, Takai Y, Suzuki T, Suzuki T June 1, 2011
A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3-methylcytidine modification in the tRNA anti-codon loop. D'Silva S, Haider SJ, Phizicky EM June 1, 2011
Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase. Zegers I, Gigot D, van Vliet F, Tricot C, Aymerich S, Bujnicki JM, Kosinski J, Droogmans L Jan. 1, 2006
Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Songe-Moller L, van den Born E, Leihne V, Vagbo CB, Kristoffersen T, Krokan HE, Kirpekar F, Falnes PO, Klungland A April 1, 2010
An early step in wobble uridine tRNA modification requires the Elongator complex. Huang B, Johansson MJ, Bystrom AS April 1, 2005
Isolation and characterization of a human cDNA for mRNA 5'-capping enzyme. Yamada-Okabe T, Doi R, Shimmi O, Arisawa M, Yamada-Okabe H April 1, 1998
Cloning and characterization of two human cDNAs encoding the mRNA capping enzyme. Tsukamoto T, Shibagaki Y, Murakoshi T, Suzuki M, Nakamura A, Gotoh H, Mizumoto K Jan. 4, 1998
Recombinant human mRNA cap methyltransferase binds capping enzyme/RNA polymerase IIo complexes. Pillutla RC, Yue Z, Maldonado E, Shatkin AJ Aug. 21, 1998
Structure of the guanylyltransferase domain of human mRNA capping enzyme. Chu C, Das K, Tyminski JR, Bauman JD, Guan R, Qiu W, Montelione GT, Arnold E, Shatkin AJ June 21, 2011
Cloning and characterization of three human cDNAs encoding mRNA (guanine-7-)-methyltransferase, an mRNA cap methylase. Tsukamoto T, Shibagaki Y, Niikura Y, Mizumoto K Oct. 9, 1998
Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes. Saha N, Schwer B, Shuman S June 4, 1999
Cap methyltransferase selective binding and methylation of GpppG-RNA are stimulated by importin-alpha. Wen Y, Shatkin AJ Dec. 1, 2000
Human mRNA cap methyltransferase: alternative nuclear localization signal motifs ensure nuclear localization required for viability. Shafer B, Chu C, Shatkin AJ April 1, 2005
RAM/Fam103a1 is required for mRNA cap methylation. Gonatopoulos-Pournatzis T, Dunn S, Bounds R, Cowling VH Nov. 18, 2011
Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. Hausmann S, Zheng S, Costanzo M, Brost RL, Garcin D, Boone C, Shuman S, Schwer B Nov. 14, 2008
Structure analysis of the conserved methyltransferase domain of human trimethylguanosine synthase TGS1. Monecke T, Dickmanns A, Strasser A, Ficner R April 1, 2009
Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase. Belanger F, Stepinski J, Darzynkiewicz E, Pelletier J Oct. 22, 2010
The human interferon-regulated ISG95 protein interacts with RNA polymerase II and shows methyltransferase activity. Haline-Vaz T, Silva TC, Zanchin NI Aug. 8, 2008
Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Monecke T, Dickmanns A, Ficner R July 1, 2009
2'-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Werner M, Purta E, Kaminska KH, Cymerman IA, Campbell DA, Mittra B, Zamudio JR, Sturm NR, Jaworski J, Bujnicki JM June 1, 2011
Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Therien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH, Coulombe B July 20, 2007
A capping-independent function of MePCE in stabilizing 7SK snRNA and facilitating the assembly of 7SK snRNP. Xue Y, Yang Z, Chen R, Zhou Q Feb. 1, 2010
Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Gu M, Fabrega C, Liu SW, Liu H, Kiledjian M, Lima CD April 9, 2004
The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. Liu H, Rodgers ND, Jiao X, Kiledjian M Sept. 2, 2002
Coordinate expression of NADPH-dependent flavin reductase, Fre-1, and Hint-related 7meGMP-directed hydrolase, DCS-1. Kwasnicka DA, Krakowiak A, Thacker C, Brenner C, Vincent SR Oct. 3, 2003
Functional link between the mammalian exosome and mRNA decapping. Wang Z, Kiledjian M Dec. 14, 2001
DcpS can act in the 5'-3' mRNA decay pathway in addition to the 3'-5' pathway. van Dijk E, Le Hir H, Seraphin B Oct. 14, 2003
Functional analysis of mRNA scavenger decapping enzymes. Liu SW, Jiao X, Liu H, Gu M, Lima CD, Kiledjian M Sept. 1, 2004
The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Treede I, Jakobsen L, Kirpekar F, Vester B, Weitnauer G, Bechthold A, Douthwaite S July 1, 2003
Crystal structure of the avilamycin resistance-conferring methyltransferase AviRa from Streptomyces viridochromogenes. Mosbacher TG, Bechthold A, Schulz GE May 23, 2003
An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tu57. Weitnauer G, Gaisser S, Trefzer A, Stockert S, Westrich L, Quiros LM, Mendez C, Salas JA, Bechthold A March 1, 2001
Structure and function of the antibiotic resistance-mediating methyltransferase AviRb from Streptomyces viridochromogenes. Mosbacher TG, Bechthold A, Schulz GE Feb. 21, 2005
Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. Monod M, Denoya C, Dubnau D July 1, 1986
Substrate requirements for ErmC' methyltransferase activity. Zhong P, Pratt SD, Edalji RP, Walter KA, Holzman TF, Shivakumar AG, Katz L Aug. 1, 1995
Family background of children with Down's syndrome and of children with a similar degree of mental retardation. Gath A, Gumley D Aug. 1, 1986
Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions. Maravic G, Bujnicki JM, Feder M, Pongor S, Flogel M Aug. 15, 2003
Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Bussiere DE, Muchmore SW, Dealwis CG, Schluckebier G, Nienaber VL, Edalji RP, Walter KA, Ladror US, Holzman TF, Abad-Zapatero C May 19, 1998
The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C June 4, 1999
Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Yu L, Petros AM, Schnuchel A, Zhong P, Severin JM, Walter K, Holzman TF, Fesik SW June 1, 1997
Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. Bibb MJ, Bibb MJ, Ward JM, Cohen SN Jan. 1, 1985
Structure of the thiostrepton resistance methyltransferase.S-adenosyl-L-methionine complex and its interaction with ribosomal RNA. Dunstan MS, Hang PC, Zelinskaya NV, Honek JF, Conn GL June 19, 2009
Overexpression of the thiostrepton-resistance gene from Streptomyces azureus in Escherichia coli and characterization of recognition sites of the 23S rRNA A1067 2'-methyltransferase in the guanosine triphosphatase center of 23S ribosomal RNA. Bechthold A, Floss HG Sept. 1, 1994
Structural basis for the methylation of G1405 in 16S rRNA by aminoglycoside resistance methyltransferase Sgm from an antibiotic producer: a diversity of active sites in m7G methyltransferases. Husain N, Tkaczuk KL, Tulsidas SR, Kaminska KH, Cubrilo S, Maravic-Vlahovicek G, Bujnicki JM, Sivaraman J July 1, 2010
Cloning and characterization of an aminoglycoside resistance determinant from Micromonospora zionensis. Kojic M, Topisirovic L, Vasiljevic B Dec. 1, 1992
Critical residues for cofactor binding and catalytic activity in the aminoglycoside resistance methyltransferase Sgm. Savic M, Ilic-Tomic T, Macmaster R, Vasiljevic B, Conn GL Sept. 1, 2008
Crystallization and preliminary crystallographic analysis of nosiheptide-resistance methyltransferase from Streptomyces actuosus in complex with SAM. Yang H, Wang P, Dong Z, Li X, Gong R, Yang Y, Li Z, Xu Y, Xu Y May 1, 2010
Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5. Goto-Ito S, Ito T, Ishii R, Muto Y, Bessho Y, Yokoyama S Sept. 1, 2008
Reliable Chemical Synthesis of Oligoribonucleotides (RNA) with 2′-O-[(Triisopropylsilyl)oxy]methyl(2′-O-tom)-Protected Phosphoramidites Stefan Pitsch, Patrick A. Weiss, Luzi Jenny, Alfred Stutz, Xiaolin Wu Dec. 19, 2001
The use of labilebaseprotectinggroups in oligoribonucleotidesynthesis Carole Chaix, Didier Molko, Robert Téoule Sept. 29, 1988
Methylaminedeprotectionprovidesincreasedyield of oligoribonucleotides M.P. Reddy, Firdous Farooqui, Naeem B. Hanna Dec. 4, 1995
The Synthesis of Allyl- and Ailyioxycarbonyl-Protected RNA Phosphoramidites. Useful Reagents for Solid-Phase Synthesis of RNAs with Base-Labile Modifications FeliciaM. Bogdan, ChristineS. Chow Jan. 12, 1998
2′-O-Methyl Thiomethyl Modifications in Hammerhead Ribozymes Alexander Karpeisky , Carolyn Gonzalez, Alex B. Burgin, Nassim Usman & Leonid Beigelman Jan. 1, 1997
Ultrafast Cleavage and Deprotection of Oligonucleotides Synthesis and Use of CAc Derivatives M. P. Reddy , Naeem B. Hanna & Firdous Farooqui Jan. 1, 1997
Ein neuer Zugang zu 2’-O-Alkylribonucleosiden und Eigenschaften deren Oligonucleotide Pierre Martin Dec. 30, 1994
A Facile Synthesis of the Phosphoramidites of 2-N-Methyl-2′- deoxy (or 2′-O-allyl)-ψ-isocytidine, 1, 3-Dimethyl-2′-deoxy-ψ-uridine and N1- Methyl-2′-O-allyl-ψ-uridine as Synthons Suitable for Oligonuc B. K. Bhattacharya & G. R. Revankar Jan. 1, 1994
A new RNA synthetic method with a 2'-O-(2-cyanoethoxymethyl) protecting group. Ohgi T, Masutomi Y, Ishiyama K, Kitagawa H, Shiba Y, Yano J Aug. 4, 2005
Antiviral amphipathic oligo- and polyribonucleotides: analogue development and biological studies. Hyde RM, Broom AD, Buckheit RW Jr May 8, 2003
Synthesis and properties of 2'-O-methyl-2-thiouridine and oligoribonucleotides containing 2'-O-methyl-2-thiouridine. Shohda K, Okamoto I, Wada T, Seio K, Sekine M Aug. 21, 2000
Chemical Approach for the Study of the ‘Kissing Complex’ of Moloney murine leukaemia Virus Sébastien Porcher July 1, 2008
The methylthiolation reaction mediated by the Radical-SAM enzymes. Atta M, Arragain S, Fontecave M, Mulliez E, Hunt JF, Luff JD, Forouhar F Dec. 7, 2011
Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene. Takeda H, Hori H, Endo Y Nov. 1, 2002
Fluorescent properties of an unnatural nucleobase, 2-amino-6-(2-thienyl)purine, in DNA and RNA fragments. Mitsui T, Kimoto M, Yokoyama S, Hirao I Sept. 1, 2005
Aquifex aeolicus Trm1[tRNA (m2(2)G26) methyltransferase] has a novel recognition mechanism of the substrate RNA. Awai T, Takehara T, Takeda H, Hori H Sept. 1, 2005
RNA nucleotide methylation. Motorin Y, Helm M. March 23, 2011
The Handling of the Mechanistic Probe 5-Fluorouridine by the Pseudouridine Synthase TruA and Its Consistency with the Handling of the Same Probe by the Pseudouridine Synthases TruB and RluA. McDonald MK, Miracco EJ, Chen J, Xie Y, Mueller EG Dec. 29, 2010
Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. O'Farrell HC, Scarsdale JN, Rife JP May 28, 2004
Structural Basis of Biological Nitrile Reduction. Chikwana VM, Stec B, Lee BW, de Crecy-Lagard V, Iwata-Reuyl D, Swairjo MA July 11, 2012
Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Duan J, Li L, Lu J, Wang W, Ye K May 14, 2009
cAMP-dependent transcription of the human CYP21B (P-450C21) gene requires a cis-regulatory element distinct from the consensus cAMP-regulatory element. Kagawa N, Waterman MR July 5, 1990
Identification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:Psi55-synthase and RNA-guided RNA:Psi-synthase activities. Muller S, Fourmann JB, Loegler C, Charpentier B, Branlant C Jan. 1, 2007
Differential roles of archaeal box H/ACA proteins in guide RNA-dependent and independent pseudouridine formation. Gurha P, Joardar A, Chaurasia P, Gupta R Oct. 1, 2007
Pseudouridine formation in archaeal RNAs: The case of Haloferax volcanii. Blaby IK, Majumder M, Chatterjee K, Jana S, Grosjean H, de Crecy-Lagard V, Gupta R July 1, 2011
Variants in SUP45 and TRM10 underlie natural variation in translation termination efficiency in Saccharomyces cerevisiae. Torabi N, Kruglyak L July 1, 2011
Expanding role of the jumonji C domain as an RNA hydroxylase. Noma A, Ishitani R, Kato M, Nagao A, Nureki O, Suzuki T Nov. 5, 2010
Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Kato M, Araiso Y, Noma A, Nagao A, Suzuki T, Ishitani R, Nureki O March 1, 2011
The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic. Walbott H, Machado-Pinilla R, Liger D, Blaud M, Rety S, Grozdanov PN, Godin K, van Tilbeurgh H, Varani G, Meier UT, Leulliot N... Nov. 15, 2011
Decapping reaction of mRNA requires Dcp1 in fission yeast: its characterization in different species from yeast to human. Sakuno T, Araki Y, Ohya Y, Kofuji S, Takahashi S, Hoshino S, Katada T... Dec. 1, 2004
An essential function of Saccharomyces cerevisiae RNA triphosphatase Cet1 is to stabilize RNA guanylyltransferase Ceg1 against thermal inactivation. Hausmann S, Ho CK, Schwer B, Shuman S... Sept. 28, 2001
Molecular evolution of dihydrouridine synthases. Kasprzak JM, Czerwoniec A, Bujnicki JM... Jan. 1, 2012
Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction. Rider LW, Ottosen MB, Gattis SG, Palfey BA... April 17, 2009
Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. Chen C, Huang B, Eliasson M, Ryden P, Bystrom AS... Sept. 1, 2011
Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ... Feb. 1, 1999
Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. Galimand M, Schmitt E, Panvert M, Desmolaize B, Douthwaite S, Mechulam Y, Courvalin P Jan. 1, 2011
N6-adenosine methylation in mRNA: substrate specificity and enzyme complexity. Rottman FM, Bokar JA, Narayan P, Shambaugh ME, Ludwiczak R... Jan. 1, 1994
Expression of the mRNA (N6-adenosine)-methyltransferase S-adenosyl-L-methionine binding subunit mRNA in cultured cells. Leach RA, Tuck MT... Oct. 1, 2001
Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM... Nov. 1, 1997
Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Maas S, Gerber AP, Rich A... Aug. 3, 1999
The human tRNA(m(2)(2)G(26))dimethyltransferase: functional expression and characterization of a cloned hTRM1 gene. Liu J, Straby KB... Sept. 15, 2000
Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Brzezicha B, Schmidt M, Makalowska I, Jarmolowski A, Pienkowska J, Szweykowska-Kulinska Z... Jan. 1, 2006
Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T... June 1, 2012
Function and detection of 5-methylcytosine in eukaryotic RNA. Squires JE, Preiss T... Oct. 1, 2010
Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH... Feb. 20, 2006
Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X... Feb. 15, 2001
The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. Benitez-Paez A, Villarroya M, Armengod ME... Aug. 13, 2012
A novel minimum ribozyme with oxidoreduction activity. Yanagawa H, Ogawa Y, Ueno M, Sasaki K, Sato T... Nov. 27, 1990
Synthesis, base pairing properties and trans-lesion synthesis by reverse transcriptases of oligoribonucleotides containing the oxidatively damaged base 5-hydroxycytidine. Kupfer PA, Leumann CJ... Nov. 1, 2011
Discovery and biological characterization of geranylated RNA in bacteria. Dumelin CE, Chen Y, Leconte AM, Chen YG, Liu DR... Sept. 16, 2012
A gain of function mutation in a protein mediates production of novel modified nucleosides. Chen P, Crain PF, Nasvall SJ, Pomerantz SC, Bjork GR... May 18, 2005
Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide. Kim IY, Veres Z, Stadtman TC... Sept. 25, 1992
Selenophosphate synthetase. Enzyme properties and catalytic reaction. Veres Z, Kim IY, Scholz TD, Stadtman TC... April 8, 1994
Biosynthesis of selenophosphate. Lacourciere GM... Jan. 1, 1999
A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Li X, Guan MX... Nov. 1, 2002
Characterization and structure of the Aquifex aeolicus protein DUF752: a bacterial tRNA-methyltransferase (MnmC2) functioning without the usually fused oxidase domain (MnmC1). Kitamura A, Nishimoto M, Sengoku T, Shibata R, Jager G, Bjork GR, Grosjean H, Yokoyama S, Bessho Y... Oct. 22, 2012
Covalent Intermediate in the Catalytic Mechanism of the Radical S-Adenosyl-l-methionine Methyl Synthase RlmN Trapped by Mutagenesis. McCusker KP, Medzihradszky KF, Shiver AL, Nichols RJ, Yan F, Maltby DA, Gross CA, Galonic Fujimori D... Oct. 22, 2012
The Human tRNA m ( 5) C methyltransferase Misu is multisite-specific. Auxilien S, Guerineau V, Szweykowska-Kulinska Z, Golinelli-Pimpaneau B... Sept. 20, 2012
Human RNA Methyltransferase BCDIN3D Regulates MicroRNA Processing. Xhemalce B, Robson SC, Kouzarides T... Oct. 12, 2012
FAD/Folate-Dependent tRNA Methyltransferase: Flavin as a new methyl-transfer agent. Hamdane D, Argentini M, Cornu D, Golinelli-Pimpaneau B, Fontecave M... Nov. 18, 2012
Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre-rRNA cleavage at site A2. Bousquet-Antonelli C, Vanrobays E, Gelugne JP, Caizergues-Ferrer M, Henry Y... June 1, 2000
The box H/ACA RNP assembly factor Naf1p contains a domain homologous to Gar1p mediating its interaction with Cbf5p. Leulliot N, Godin KS, Hoareau-Aveilla C, Quevillon-Cheruel S, Varani G, Henry Y, Van Tilbeurgh H... Aug. 31, 2007
RNA methylation by the MIS complex regulates a cell fate decision in yeast. Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR... Jan. 1, 2012
SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly. Ollagnier-de-Choudens S, Sanakis Y, Fontecave M... Oct. 1, 2004
Structural alterations of the cysteine desulfurase IscS of Salmonella enterica serovar Typhimurium reveal substrate specificity of IscS in tRNA thiolation. Lundgren HK, Bjork GR... April 1, 2006
Cloning and mapping of a human novel cDNA (NHP2L1) that encodes a protein highly homologous to yeast nuclear protein NHP2. Saito H, Fujiwara T, Shin S, Okui K, Nakamura Y... Jan. 1, 1996
Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs. Kiss T, Fayet E, Jady BE, Richard P, Weber M... Jan. 1, 2006
Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae. Muhlenhoff U, Balk J, Richhardt N, Kaiser JT, Sipos K, Kispal G, Lill R... Aug. 27, 2004
Isd11p protein activates the mitochondrial cysteine desulfurase Nfs1p protein. Pandey A, Yoon H, Lyver ER, Dancis A, Pain D... Nov. 4, 2011
Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface. Koo BK, Park CJ, Fernandez CF, Chim N, Ding Y, Chanfreau G, Feigon J... Sept. 2, 2011
Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Peifer C, Sharma S, Watzinger P, Lamberth S, Kotter P, Entian KD... Nov. 23, 2012
The tRNA recognition mechanism of folate/FAD-dependent tRNA methyltransferase (TrmFO). Yamagami R, Yamashita K, Nishimasu H, Tomikawa C, Ochi A, Iwashita C, Hirata A, Ishitani R, Nureki O, Hori H... Oct. 24, 2012
Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM... Oct. 1, 2012
ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C... Nov. 20, 2012
Human AlkB homologue 5 is a nuclear 2-oxoglutarate dependent oxygenase and a direct target of hypoxia-inducible factor 1alpha (HIF-1alpha). Thalhammer A, Bencokova Z, Poole R, Loenarz C, Adam J, O'Flaherty L, Schodel J, Mole D, Giaslakiotis K, Schofield CJ, Hammond EM, Ratcliffe PJ, Pollard PJ... Jan. 1, 2011
Trm13p, the tRNA:Xm4 modification enzyme from Saccharomyces cerevisiae is a member of the Rossmann-fold MTase superfamily: prediction of structure and active site. Tkaczuk KL... March 1, 2010
Over expression of a tRNA(Leu) isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. Sorensen MA, Elf J, Bouakaz E, Tenson T, Sanyal S, Bjork GR, Ehrenberg M... Nov. 18, 2005
15N-labeled tRNA. Identification of 4-thiouridine in Escherichia coli tRNASer1 and tRNATyr2 by 1H-15N two-dimensional NMR spectroscopy. Griffey RH, Davis DR, Yamaizumi Z, Nishimura S, Hawkins BL, Poulter CD... Sept. 15, 1986
Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life. Fislage M, Roovers M, Tuszynska I, Bujnicki JM, Droogmans L, Versees W... June 1, 2012
Pseudouridine modification in Caenorhabditis elegans spliceosomal snRNAs: unique modifications are found in regions involved in snRNA-snRNA interactions. Patton JR, Padgett RW... Jan. 1, 2005
U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. Wu G, Xiao M, Yang C, Yu YT... Feb. 5, 2011
Caenorhabditis elegans pseudouridine synthase 1 activity in vivo: tRNA is a substrate, but not U2 small nuclear RNA. Patton JR, Padgett RW... June 1, 2003
Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. Chujo T, Suzuki T... Dec. 1, 2012
A cyclic form of N(6)-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Miyauchi K, Kimura S, Suzuki T... Dec. 16, 2012
A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase--extensive moonlighting in mitochondrial tRNA biogenesis. Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W... Dec. 1, 2012
Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus. Ishida K, Kunibayashi T, Tomikawa C, Ochi A, Kanai T, Hirata A, Iwashita C, Hori H... March 1, 2011
Identification and characterization of the Thermus thermophilus 5-methylcytidine (m5C) methyltransferase modifying 23 S ribosomal RNA (rRNA) base C1942. Larsen LH, Rasmussen A, Giessing AM, Jogl G, Kirpekar F... Aug. 10, 2012
Determination of the target nucleosides for members of two families of 16S rRNA methyltransferases that confer resistance to partially overlapping groups of aminoglycoside antibiotics. Savic M, Lovric J, Tomic TI, Vasiljevic B, Conn GL... Sept. 1, 2009
Structures of a putative RNA 5-methyluridine methyltransferase, Thermus thermophilus TTHA1280, and its complex with S-adenosyl-L-homocysteine. Pioszak AA, Murayama K, Nakagawa N, Ebihara A, Kuramitsu S, Shirouzu M, Yokoyama S... Oct. 1, 2005
Emerging themes in radical SAM chemistry. Shisler KA, Broderick JB... Dec. 1, 2012
The last rRNA methyltransferase of E. coli revealed: the yhiR gene encodes adenine-N6 methyltransferase specific for modification of A2030 of 23S ribosomal RNA. Golovina AY, Dzama MM, Osterman IA, Sergiev PV, Serebryakova MV, Bogdanov AA, Dontsova OA... Sept. 1, 2012
Characterization of a B. subtilis minor isoleucine tRNA deduced from tDNA having a methionine anticodon CAT. Matsugi J, Murao K, Ishikura H... April 1, 1996
Characterization of a whole set of tRNA molecules in an aerobic hyper-thermophilic Crenarchaeon, Aeropyrum pernix K1. Yamazaki S, Kikuchi H, Kawarabayasi Y... Jan. 1, 2005
The complete set of tRNA species in Nanoarchaeum equitans. Randau L, Pearson M, Soll D... May 23, 2005
Loss of a universal tRNA feature. Wang C, Sobral BW, Williams KP... March 1, 2007
Mitochondrial tRNA import in Toxoplasma gondii. Esseiva AC, Naguleswaran A, Hemphill A, Schneider A... Oct. 8, 2004
Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae Sunny Sharma, Peter Watzinger, Peter Kötter, and Karl-Dieter Entian April 4, 2013
Mechanistic insights into small RNA recognition and modification by the HEN1 methyltransferase. Plotnikova A, Baranauske S, Osipenko A, Klimasauskas S, Vilkaitis G... April 1, 2013
FTO-mediated formation of N(6)-hydroxymethyladenosine and N(6)-formyladenosine in mammalian RNA. Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, Han KL, Cui Q, He C... Jan. 1, 2013
N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C... Dec. 1, 2011
Crystal structure of the FTO protein reveals basis for its substrate specificity. Han Z, Niu T, Chang J, Lei X, Zhao M, Wang Q, Cheng W, Wang J, Feng Y, Chai J... April 22, 2010
Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Kim J, Xiao H, Bonanno JB, Kalyanaraman C, Brown S, Tang X, Al-Obaidi NF, Patskovsky Y, Babbitt PC, Jacobson MP, Lee YS, Almo SC... May 15, 2013
S-Adenosyl-S-carboxymethyl-L-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA. Byrne RT, Whelan F, Aller P, Bird LE, Dowle A, Lobley CM, Reddivari Y, Nettleship JE, Owens RJ, Antson AA, Waterman DG... June 1, 2013
The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome. Voorhees RM, Mandal D, Neubauer C, Kohrer C, Rajbhandary UL, Ramakrishnan V... May 1, 2013
tRNA binding, positioning and modification by the pseudouridine synthase Pus10. Kamalampeta R, Keffer-Wilkes LC, Kothe U... June 3, 2013
The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL. Liu RJ, Zhou M, Fang ZP, Wang M, Zhou XL, Wang ED... June 26, 2013
Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10. Swinehart WE, Henderson JC, Jackman JE... June 21, 2013
Conservation of structure and mechanism by Trm5 enzymes. Christian T, Gamper H, Hou YM... July 25, 2013
Identification and characterization of tRNA (Gm18) methyltransferase from Thermus thermophilus HB8: domain structure and conserved amino acid sequence motifs. Hori H, Suzuki T, Sugawara K, Inoue Y, Shibata T, Kuramitsu S, Yokoyama S, Oshima T, Watanabe K... March 1, 2002
Substrate recognition of tRNA (Guanosine-2'-)-methyltransferase from Thermus thermophilus HB27. Hori H, Yamazaki N, Matsumoto T, Watanabe Y, Ueda T, Nishikawa K, Kumagai I, Watanabe K... Oct. 2, 1998
Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme. Nureki O, Watanabe K, Fukai S, Ishii R, Endo Y, Hori H, Yokoyama S... April 1, 2004
The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and non-substrate tRNA via an induced-fit process. Ochi A, Makabe K, Yamagami R, Hirata A, Sakaguchi R, Hou YM, Watanabe K, Nureki O, Kuwajima K, Hori H... July 18, 2013
Structure of dihydrouridine synthase C (DusC) from Escherichia coli. Chen M, Yu J, Tanaka Y, Tanaka M, Tanaka I, Yao M... Aug. 1, 2013
Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Sharma S, Yang J, Watzinger P, Kotter P, Entian KD... Aug. 2, 2013
The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits. Sardana R, Johnson AW... Nov. 1, 2012
Structural and functional insights into the molecular mechanism of rRNA m6A methyltransferase RlmJ. Punekar AS, Liljeruhm J, Shepherd TR, Forster AC, Selmer M... Aug. 13, 2013
Influence of temperature on tRNA modification in archaea: Methanococcoides burtonii (optimum growth temperature [Topt], 23 degrees C) and Stetteria hydrogenophila (Topt, 95 degrees C). Noon KR, Guymon R, Crain PF, McCloskey JA, Thomm M, Lim J, Cavicchioli R... Sept. 1, 2003
Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate Shao Z, Yan W, Peng J, Zuo X, Zou Y, Li F, Gong D, Ma R, Wu J, Shi Y, Zhang Z, Teng M, Li X, Gong Q Sept. 29, 2013
Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW) base in phenylalanine-tRNA. Rodriguez V, Vasudevan S, Noma A, Carlson BA, Green JE, Suzuki T, Chandrasekharappa SC Jan. 1, 2012
A small RNA derived from RNA coactivator SRA blocks steroid receptor signaling via inhibition of Pus1p-mediated pseudouridylation of SRA: evidence of a novel RNA binding domain in the N-terminus of steroid receptors. Ghosh SK, Patton JR, Spanjaard RA Oct. 16, 2012
Pseudouridine synthase 1: a site-specific synthase without strict sequence recognition requirements. Sibert BS, Patton JR March 1, 2012
Partial activity is seen with many substitutions of highly conserved active site residues in human Pseudouridine synthase 1. Sibert BS, Fischel-Ghodsian N, Patton JR Sept. 1, 2008
Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. Patton JR, Bykhovskaya Y, Mengesha E, Bertolotto C, Fischel-Ghodsian N May 20, 2005
In Human Pseudouridine Synthase 1 (hPus1), a C-Terminal Helical Insert Blocks tRNA from Binding in the Same Orientation as in the Pus1 Bacterial Homologue TruA, Consistent with Their Different Target Selectivities. Czudnochowski N, Wang AL, Finer-Moore J, Stroud RM Oct. 23, 2013
The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Helm M, Brule H, Degoul F, Cepanec C, Leroux JP, Giege R, Florentz C April 1, 1998
Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K Dec. 2, 2002
Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. Yasukawa T, Kirino Y, Ishii N, Holt IJ, Jacobs HT, Makifuchi T, Fukuhara N, Ohta S, Suzuki T, Watanabe K May 23, 2005
Effect of a mutation in the anticodon of human mitochondrial tRNAPro on its post-transcriptional modification pattern. Brule H, Holmes WM, Keith G, Giege R, Florentz C Feb. 15, 1998
Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny. Messmer M, Putz J, Suzuki T, Suzuki T, Sauter C, Sissler M, Catherine F Nov. 1, 2009
Acquisition of the wobble modification in mitochondrial tRNALeu(CUN) bearing the G12300A mutation suppresses the MELAS molecular defect. Kirino Y, Yasukawa T, Marjavaara SK, Jacobs HT, Holt IJ, Watanabe K, Suzuki T March 15, 2006
A disease-causing point mutation in human mitochondrial tRNAMet rsults in tRNA misfolding leading to defects in translational initiation and elongation. Jones CN, Jones CI, Graham WD, Agris PF, Spremulli LL Dec. 5, 2008
Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC. Kim J, Almo SC Jan. 1, 2013
Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Chan CT, Pang YL, Deng W, Babu IR, Dyavaiah M, Begley TJ, Dedon PC... Jan. 1, 2012
A METTL3-METTL14 complex mediates mammalian nuclear RNA N-adenosine methylation. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C... Dec. 6, 2013
Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs. Mandal D, Kohrer C, Su D, Babu IR, Chan CT, Liu Y, Soll D, Blum P, Kuwahara M, Dedon PC, Rajbhandary UL... Dec. 16, 2013
Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Sharma S, Yang J, Duttmann S, Watzinger P, Kotter P, Entian KD... Dec. 11, 2013
An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation. Friedt J, Leavens FM, Mercier E, Wieden HJ, Kothe U... Dec. 26, 2013
The output of the tRNA modification pathways controlled by the Escherichia coli MnmEG and MnmC enzymes depends on the growth conditions and the tRNA species. Moukadiri I, Garzon MJ, Bjork GR, Armengod ME... Nov. 1, 2013
Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, McDonough MA... Feb. 1, 2014
Partial Methylation at Am100 in 18S rRNA of Baker's Yeast Reveals Ribosome Heterogeneity on the Level of Eukaryotic rRNA Modification. Buchhaupt M, Sharma S, Kellner S, Oswald S, Paetzold M, Peifer C, Watzinger P, Schrader J, Helm M, Entian KD... Jan. 1, 2014
Crystal Structures of Human RNA Demethylase Alkbh5 Reveal Basis for Substrate Recognition. Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C, Chen Z... March 10, 2014
SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization. Fislage M, Brosens E, Deyaert E, Spilotros A, Pardon E, Loris R, Steyaert J, Garcia-Pino A, Versees W... March 14, 2014
Molecular recognition and modification of the 30S ribosome by the aminoglycoside-resistance methyltransferase NpmA. Dunkle JA, Vinal K, Desai PM, Zelinskaya N, Savic M, West DM, Conn GL, Dunham CM... April 9, 2014
Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T... Dec. 1, 2013
Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single stranded m6A RNA demethylation. Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min J... April 28, 2014
Distinct tRNA modifications in the thermo-acidophilic archaeon, Thermoplasma acidophilum. Tomikawa C, Ohira T, Inoue Y, Kawamura T, Yamagishi A, Suzuki T, Hori H... Nov. 1, 2013
Radical mediated ring formation in the biosynthesis of the hypermodified tRNA base wybutosine. Young AP, Bandarian V... Aug. 1, 2013
Pyruvate is the source of the two carbons that are required for formation of the imidazoline ring of 4-demethylwyosine. Young AP, Bandarian V... Dec. 13, 2011
4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S](+2) cluster that interacts with the pyruvate co-substrate. Perche-Letuvee P, Kathirvelu V, Berggren G, Clemancey M, Latour JM, Maurel V, Douki T, Armengaud J, Mulliez E, Fontecave M, Garcia-Serres R, Gambarelli S, Atta M... Nov. 1, 2012
A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Suzuki T, Suzuki T... May 15, 2014
Biogenesis of glutaminyl-mt tRNAGln in human mitochondria. Nagao A, Suzuki T, Katoh T, Sakaguchi Y, Suzuki T... Sept. 22, 2009
A novel cloverleaf structure found in mammalian mitochondrial tRNA(Ser) (UCN). Yokogawa T, Watanabe Y, Kumazawa Y, Ueda T, Hirao I, Miura K, Watanabe K... Nov. 25, 1991
Archease from Pyrococcus abyssi improves substrate specificity and solubility of a tRNA m5C methyltransferase. Auxilien S, El Khadali F, Rasmussen A, Douthwaite S, Grosjean H... June 1, 2007
Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA. Phillips G, Chikwana VM, Maxwell A, El-Yacoubi B, Swairjo MA, Iwata-Reuyl D, de Crecy-Lagard V... April 23, 2010
Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP. Lauhon CT... Nov. 6, 2012
Yeast serine isoacceptor tRNAs: variations of their content as a function of growth conditions and primary structure of the minor tRNA(Ser)GCU. Heyman T, Agoutin B, Fix C, Dirheimer G, Keith G... June 27, 1994
N6-Acetyladenosine: a new modified nucleoside from Methanopyrus kandleri tRNA. Sauerwald A, Sitaramaiah D, McCloskey JA, Soll D, Crain PF... May 23, 2005
The flavoprotein Mcap0476 (RlmFO) catalyzes m5U1939 modification in Mycoplasma capricolum 23S rRNA. Lartigue C, Lebaudy A, Blanchard A, Yacoubi BE, Rose S, Grosjean H, Douthwaite S... June 17, 2014
Characterization of two homologous 2'-O-methyltransferases showing different specificities for their tRNA substrates. Somme J, Van Laer B, Roovers M, Steyaert J, Versees W, Droogmans L... June 20, 2014
The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu. Shanmugam R, Aklujkar M, Schafer M, Reinhardt R, Nickel O, Reuter G, Lovley DR, Ehrenhofer-Murray A, Nellen W, Ankri S, Helm M, Jurkowski TP, Jeltsch A... June 1, 2014
TtcA a new tRNA-thioltransferase with an Fe-S cluster. Bouvier D, Labessan N, Clemancey M, Latour JM, Ravanat JL, Fontecave M, Atta M... June 9, 2014
TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O... July 22, 2014
A single acetylation of 18S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae. Ito S, Akamatsu Y, Noma A, Kimura S, Miyauchi K, Ikeuchi Y, Suzuki T, Suzuki T... Aug. 1, 2014
Binding Induced RNA Conformational Changes Control Substrate Recognition and Catalysis by the Thiostrepton-resistance Methyltransferase (Tsr). Kuiper EG, Conn GL... Aug. 1, 2014
Assignment of 2'-O-methyltransferases to Modification Sites on the Mammalian Mitochondrial Large Subunit 16S rRNA. Lee KW, Bogenhagen DF... July 1, 2014
Discovery of the beta-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs. Kimura S, Miyauchi K, Ikeuchi Y, Thiaville PC, de Crecy-Lagard V, Suzuki T... July 24, 2014
Biosynthesis of wyosine derivatives in tRNA(Phe) of Archaea: role of a remarkable bifunctional tRNA(Phe):m1G/imG2 methyltransferase. Urbonavicius J, Meskys R, Grosjean H... June 1, 2014
A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. Gigova A, Duggimpudi S, Pollex T, Schaefer M, Kos M... Aug. 14, 2014
Trm4 and Nsun2 RNA:mC Methyltransferases Form Metabolite-Dependent, Covalent Adducts with Previously Methylated RNA. Moon HJ, Redman KL... Nov. 6, 2014
Methylation by NSun2 represses the levels and function of microRNA 125b. Yuan S, Tang H, Xing J, Fan X, Cai X, Li Q, Han P, Luo Y, Zhang Z, Jiang B, Dou Y, Gorospe M, Wang W... Oct. 1, 2014
Structure of Saccharomyces cerevisiae mitochondrial Qri7 in complex with AMP. Tominaga T, Kobayashi K, Ishii R, Ishitani R, Nureki O... Aug. 1, 2014
Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes. Letoquart J, Huvelle E, Wacheul L, Bourgeois G, Zorbas C, Graille M, Heurgue-Hamard V, Lafontaine DL... Dec. 8, 2014
Hypermethylated-capped selenoprotein mRNAs in mammals. Wurth L, Gribling-Burrer AS, Verheggen C, Leichter M, Takeuchi A, Baudrey S, Martin F, Krol A, Bertrand E, Allmang C... Jan. 1, 2014
FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu Y, Jia GF, Wu W, Tong WM, Okamoto A, He C, Rendtlew Danielsen JM, Wang XJ, Yang YG... Dec. 1, 2014
Crystal and solution structures of methyltransferase RsmH provide basis for methylation of C1402 in 16S rRNA. Wei Y, Zhang H, Gao ZQ, Wang WJ, Shtykova EV, Xu JH, Liu QS, Dong YH... July 1, 2012
Purification, crystallization and preliminary crystallographic analysis of the 16S rRNA methyltransferase RsmI from Escherichia coli. Zhao M, Wang L, Zhang H, Dong Y, Gong Y, Zhang L, Wang J... Sept. 1, 2014
Dynamics of RNA modification by a multi-site-specific tRNA methyltransferase. Hamdane D, Guelorget A, Guerineau V, Golinelli-Pimpaneau B... Jan. 1, 2015
Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase. Guelorget A, Roovers M, Guerineau V, Barbey C, Li X, Golinelli-Pimpaneau B... Oct. 1, 2010
Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18S rRNA. Ito S, Horikawa S, Suzuki T, Kawauchi H, Tanaka Y, Suzuki T, Suzuki T... Nov. 19, 2014
RNA Cytidine Acetyltransferase of Small-Subunit Ribosomal RNA: Identification of Acetylation Sites and the Responsible Acetyltransferase in Fission Yeast, Schizosaccharomyces pombe. Taoka M, Ishikawa D, Nobe Y, Ishikawa H, Yamauchi Y, Terukina G, Nakayama H, Hirota K, Takahashi N, Isobe T... Jan. 1, 2014
Steroid receptor RNA activator (SRA) modification by the human pseudouridine synthase 1 (hPus1p): RNA binding, activity, and atomic model. Huet T, Miannay FA, Patton JR, Thore S... Jan. 1, 2014
Structure of the Kti11/Kti13 Heterodimer and Its Double Role in Modifications of tRNA and Eukaryotic Elongation Factor 2. Glatt S, Zabel R, Vonkova I, Kumar A, Netz DJ, Pierik AJ, Rybin V, Lill R, Gavin A, Balbach J, Breunig KD, Muller CW... Dec. 23, 2014
Solution structure of Kti11p from Saccharomyces cerevisiae reveals a novel zinc-binding module. Sun J, Zhang J, Wu F, Xu C, Li S, Zhao W, Wu Z, Wu J, Zhou CZ, Shi Y... June 21, 2005
Structure determination of two new amino acid-containing derivatives of adenosine from tRNA of thermophilic bacteria and archaea. Reddy DM, Crain PF, Edmonds CG, Gupta R, Hashizume T, Stetter KO, Widdel F, McCloskey JA... Nov. 11, 1992
Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, Calle-Perez A, Pircher A, Gerstl MP, Pfeifenberger S, Brandl C, Sonntagbauer M, Kriegner A, Linder A, Weinhausel A, Mohr T, Steiger M, Mattanovich D, Rinnerthaler M, Karl T, Sharma S, Entian KD, Kos M, Breitenbach M, Wilson IB, Polacek N, Grillari-Voglauer R, Breitenbach-Koller L, Grillari J... Jan. 1, 2015
Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Sharma S, Langhendries JL, Watzinger P, Kotter P, Entian KD, Lafontaine DL... Jan. 4, 2015
Presence and coding properties of 2'-O-methyl-5-carbamoylmethyluridine (ncm5Um) in the wobble position of the anticodon of tRNA(Leu) (U*AA) from brewer's yeast. Glasser AL, el Adlouni C, Keith G, Sochacka E, Malkiewicz A, Santos M, Tuite MF, Desgres J... Dec. 21, 1992
Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes. Guy MP, Phizicky EM... Feb. 1, 2015
Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA(Ile). Szweykowska-Kulinska Z, Senger B, Keith G, Fasiolo F, Grosjean H... Oct. 3, 1994
Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification. Kim J, Xiao H, Koh J, Wang Y, Bonanno JB, Thomas K, Babbitt PC, Brown S, Lee YS, Almo SC... April 8, 2015
Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures. Tyagi K, Pedrioli PG... April 13, 2015
Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Johansson MJ, Esberg A, Huang B, Bjork GR, Bystrom AS... May 1, 2008
Selenium-containing tRNA(Glu) and tRNA(Lys) from Escherichia coli: purification, codon specificity and translational activity. Wittwer AJ, Ching WM... March 1, 1989
The Structure of Escherichia coli TcdA (Also Known As CsdL) Reveals a Novel Topology and Provides Insight into the tRNA Binding Surface Required for N-Threonylcarbamoyladenosine Dehydratase Activity. Kim S, Lee H, Park S... June 21, 2015
The crystal structure and small-angle X-ray analysis of CsdL/TcdA reveal a new tRNA binding motif in the MoeB/E1 superfamily. Lopez-Estepa M, Arda A, Savko M, Round A, Shepard WE, Bruix M, Coll M, Fernandez FJ, Jimenez-Barbero J, Vega MC... Jan. 1, 2015
An extended dsRBD is required for post-transcriptional modification in human tRNAs. Bou-Nader C, Pecqueur L, Bregeon D, Kamah A, Guerineau V, Golinelli-Pimpaneau B, Guimaraes BG, Fontecave M, Hamdane D... Oct. 1, 2015
Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Shaheen R, Abdel-Salam GM, Guy MP, Alomar R, Abdel-Hamid MS, Afifi HH, Ismail SI, Emam BA, Phizicky EM, Alkuraya FS... Jan. 1, 2015
Crystal Structure of the Human tRNA mA58 Methyltransferase-tRNA Complex: Refolding of Substrate tRNA allows Access to the Methylation Target. Finer-Moore J, Czudnochowski N, O'Connell JD 3rd, Wang AL, Stroud RM... Oct. 12, 2015
Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure. Letoquart J, Tran NV, Caroline V, Aleksandrov A, Lazar N, van Tilbeurgh H, Liger D, Graille M... Oct. 4, 2015
A map of 5-methylcytosine residues in Trypanosoma brucei tRNA revealed by sodium bisulfite sequencing. Militello KT, Chen LM, Ackerman SE, Mandarano AH, Valentine EL May 20, 2014
Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons Sakai Y, Miyauchi K, Kimura S, Suzuki T. Jan. 29, 2016
Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon. Kawamura T, Hirata A, Ohno S, Nomura Y, Nagano T, Nameki N, Yokogawa T, Hori H Feb. 29, 2016
Substrate Recognition and Modification by the Nosiheptide Resistance Methyltransferase Sitao Yin, Hengyi Jiang, Dongrong Chen, Alastair I. H. Murchie April 24, 2015
Substrate tRNA recognition mechanism of eubacterial tRNA (m1A58) methyltransferase (TrmI). Takuma H, Ushio N, Minoji M, Kazayama A, Shigi N, Hirata A, Tomikawa C, Ochi A, Hori H Feb. 27, 2015
Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. Patil A, Chan CT, Dyavaiah M, Rooney JP, Dedon PC, Begley TJ. July 1, 2012
An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis Lin CJ, Smibert P, Zhao X, Hu JF, Ramroop J, Kellner SM, Benton MA, Govind S, Dedon PC, Sternglanz R, Lai EC. Oct. 29, 2015
Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Müller M, Hartmann M, Schuster I, Bender S, Thüring KL, Helm M, Katze JR, Nellen W, Lyko F, Ehrenhofer-Murray AE. Dec. 15, 2015
Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity. Ramírez V, Gonzalez B, López A, Castelló MJ, Gil MJ, Etherington GJ, Zheng B, Chen P, Vera P. Oct. 22, 2015
Profiling of RNA modifications by multiplexed stable isotope labelling. Kellner S, Neumann J, Rosenkranz D, Lebedeva S, Ketting RF, Zischler H, Schneider D, Helm M. April 4, 2014
Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Su D, Chan CT, Gu C, Lim KS, Chionh YH, McBee ME, Russell BS, Babu IR, Begley TJ, Dedon PC... April 1, 2014
Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Kellner S, Ochel A, Thuring K, Spenkuch F, Neumann J, Sharma S, Entian KD, Schneider D, Helm M... Oct. 1, 2014
The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK May 18, 2017
NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. Haag S, Warda AS, Kretschmer J, Günnigmann MA, Höbartner C, Bohnsack MT Sept. 21, 2015
Sequence-specific and Shape-selective RNA Recognition by the Human RNA 5-Methylcytosine Methyltransferase NSun6. Long T, Li J, Li H, Zhou M, Zhou XL, Liu RJ, Wang ED Nov. 11, 2016
Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Liu RJ, Long T, Li J, Li H, Wang ED June 20, 2017
Three distinct 3-methylcytidine (m(3)C) methyltransferases modify tRNA and mRNA in mice and humans. Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, Xu J, Ye F, Gao YG, Dedon PC, Fu XY Sept. 1, 2017
NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. Metodiev MD, Spåhr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, Habermann B, Larsson NG, Ruzzenente B. Feb. 6, 2014
Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Spåhr H, Habermann B, Gustafsson CM, Larsson NG, Hallberg BM. Sept. 18, 2012
MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cámara Y, Asin-Cayuela J, Park CB, Metodiev MD, Shi Y, Ruzzenente B, Kukat C, Habermann B, Wibom R, Hultenby K, Franz T, Erdjument-Bromage H, Tempst P, Hallberg BM, Gustafsson CM, Larsson NG. May 4, 2011
A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. McCulloch V, Seidel-Rogol BL, Shadel GS. Feb. 1, 2002
Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Metodiev MD, Lesko N, Park CB, Cámara Y, Shi Y, Wibom R, Hultenby K, Gustafsson CM, Larsson NG April 9, 2009
MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Rorbach J, Boesch P, Gammage PA, Nicholls TJ, Pearce SF, Patel D, Hauser A, Perocchi F, Minczuk M Sept. 1, 2014
The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules. Zaganelli S, Rebelo-Guiomar P, Maundrell K, Rozanska A, Pierredon S, Powell CA, Jourdain AA, Hulo N, Lightowlers RN, Chrzanowska-Lightowlers ZM, Minczuk M, Martinou JC March 17, 2017
A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. Antonicka H, Choquet K, Lin ZY, Gingras AC, Kleinman CL, Shoubridge EA Jan. 18, 2017
NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nakano S July 12, 2016
Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Van Haute L, Dietmann S, Kremer L, Hussain S, Pearce SF, Powell CA, Rorbach J, Lantaff R, Blanco S, Sauer S, Kotzaeridou U, Hoffmann GF, Memari Y, Kolb-Kokocinski A, Durbin R, Mayr JA, Frye M, Prokisch H, Minczuk M June 30, 2017
NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hübner B, Seikowski J, Dennerlein S, Rehling P, Rodnina MV, Höbartner C, Bohnsack MT Oct. 4, 2016
Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. Chen YC, Kelly VP, Stachura SV, Garcia GA May 2, 2010
A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Shaheen R, Han L, Faqeih E, Ewida N, Alobeid E, Phizicky EM, Alkuraya FS July 1, 2016
Identification of the methyltransferase targeting C2499 in Deinococcus radiodurans 23S ribosomal RNA. Mundus J, Flyvbjerg KF, Kirpekar F Nov. 21, 2015
MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M, Fray RG May 1, 2008
Identification of factors required for m(6) A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. Růžička K, Zhang M, Campilho A, Bodi Z, Kashif M, Saleh M, Eeckhout D, El-Showk S, Li H, Zhong S, De Jaeger G, Mongan NP, Hejátko J, Helariutta Y, Fray RG May 15, 2017
Unique Features of the m6A Methylome in Arabidopsis thaliana Guan-Zheng Luo, Alice MacQueen, Guanqun Zheng, Hongchao Duan, Louis C Dore, Zhike Lu, Jun Liu, Kai Chen, Guifang Jia, Joy Bergelson, Chuan He Nov. 28, 2014
Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs Byeong-il Kang, Kenjyo Miyauchi, Michal Matuszewski, Gabriel Silveira D’Almeida, Mary Anne T. Rubio, Juan D. Alfonzo, Kazuki Inoue, Yuriko Sakaguchi, Takeo Suzuki, Elzbieta Sochacka, Tsutomu Suzuki Dec. 2, 2016
Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases Ntokou E, Hansen LH, Kongsted J, Vester B Dec. 23, 2015
Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue. Van Laer B, Roovers M, Wauters L, Kasprzak JM, Dyzma M, Deyaert E, Kumar Singh R, Feller A, Bujnicki JM, Droogmans L, Versées W Jan. 29, 2016
Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation Deng W, Babu IR, Su D, Yin S, Begley TJ, Dedon PC Dec. 15, 2015
RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithr Shoji T, Takaya A, Sato Y, Kimura S, Suzuki T, Yamamoto T Oct. 15, 2015
tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily. Liu RJ, Long T, Zhou M, Zhou XL, Wang ED Sept. 3, 2015
Identification of determinants for tRNA substrate recognition by Escherichia coli C/U34 2'-O-methyltransferase. Zhou M, Long T, Fang ZP, Zhou XL, Liu RJ, Wang ED June 24, 2015
The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Zorbas C, Nicolas E, Wacheul L, Huvelle E, Heurgué-Hamard V, Lafontaine DL. June 1, 2015
Hydroxylation of a conserved tRNA modification establishes non-universal genetic code in echinoderm mitochondria. Nagao A, Ohara M, Miyauchi K, Yokobori SI, Yamagishi A, Watanabe K, Suzuki T... Sept. 1, 2017
A vastly increased chemical variety of RNA modifications that includes a thioacetal structure Dal Magro C, Keller P, Kotter A, Werner S, Duarte V, Marchand V, Ignarski M, Freiwald A, Müller RU, Dieterich C, Motorin Y, Butter F, Atta M, Helm M. April 6, 2018
ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Kawarada L, Suzuki T, Ohira T, Hirata S, Miyauchi K, Suzuki T... July 7, 2017
Purification and characterization of the human elongator complex. Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H, Tempst P, Svejstrup JQ... Feb. 25, 2002
A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Schlieker CD, Van der Veen AG, Damon JR, Spooner E, Ploegh HL... Nov. 25, 2008
Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Guzzi N, Ciesla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimkova K, Sommarin MNE, Munita R, Lubas M, Lim Y, Okuyama K, Soneji S, Karlsson G, Hansson J, Jonsson G, Lund AH, Sigvardsson M, Hellstrom-Lindberg E, Hsieh AC, Bellodi C... May 17, 2018
A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei. Fleming IM, Paris Z, Gaston KW, Balakrishnan R, Fredrick K, Rubio MA, Alfonzo JD... Jan. 18, 2016
RNA editing by adenosine deaminases generates RNA and protein diversity. Schaub M, Keller W... Aug. 1, 2002
A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9). Ramser J, Winnepenninckx B, Lenski C, Errijgers V, Platzer M, Schwartz CE, Meindl A, Kooy RF... Sept. 1, 2004
Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Freude K, Hoffmann K, Jensen LR, Delatycki MB, des Portes V, Moser B, Hamel B, van Bokhoven H, Moraine C, Fryns JP, Chelly J, Gecz J, Lenzner S, Kalscheuer VM, Ropers HH... Aug. 1, 2004
Solution structure of Urm1 and its implications for the origin of protein modifiers. Xu J, Zhang J, Wang L, Zhou J, Huang H, Wu J, Zhong Y, Shi Y... Aug. 1, 2006
Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Matthies A, Nimtz M, Leimkuhler S... May 31, 2005
Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Biederbick A, Stehling O, Rosser R, Niggemeyer B, Nakai Y, Elsasser HP, Lill R... Aug. 1, 2006
Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. Tong WH, Rouault T... Nov. 1, 2000
Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Wan LC, Maisonneuve P, Szilard RK, Lambert JP, Ng TF, Manczyk N, Huang H, Laister R, Caudy AA, Gingras AC, Durocher D, Sicheri F... Feb. 25, 2017
The human EKC/KEOPS complex is recruited to Cullin2 ubiquitin ligases by the human tumour antigen PRAME. Costessi A, Mahrour N, Sharma V, Stunnenberg R, Stoel MA, Tijchon E, Conaway JW, Conaway RC, Stunnenberg HG... Jan. 1, 2012
tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy. Edvardson S, Prunetti L, Arraf A, Haas D, Bacusmo JM, Hu JF, Ta-Shma A, Dedon PC, de Crecy-Lagard V, Elpeleg O... May 1, 2017
Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency. Facchin S, Lopreiato R, Ruzzene M, Marin O, Sartori G, Gotz C, Montenarh M, Carignani G, Pinna LA... Aug. 14, 2003
Cloning and characterization of a p53-related protein kinase expressed in interleukin-2-activated cytotoxic T-cells, epithelial tumor cell lines, and the testes. Abe Y, Matsumoto S, Wei S, Nezu K, Miyoshi A, Kito K, Ueda N, Shigemoto K, Hitsumoto Y, Nikawa J, Enomoto Y... Nov. 23, 2001
Identification of CGI-121, a novel PRPK (p53-related protein kinase)-binding protein. Miyoshi A, Kito K, Aramoto T, Abe Y, Kobayashi N, Ueda N... April 4, 2003
2'-O-Methyl-5-hydroxymethylcytidine: A Second Oxidative Derivative of 5-Methylcytidine in RNA. Huber SM, van Delft P, Tanpure A, Miska EA, Balasubramanian S... Jan. 8, 2017
Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine. Ryu H, Grove TL, Almo SC, Kim J... Sept. 28, 2018
LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion. Simonova A, Svojanovska B, Trylcova J, Hubalek M, Moravcik O, Zavrel M, Pavova M, Hodek J, Weber J, Cvacka J, Paces J, Cahova H... June 18, 2019
RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. A Beghini,C B Ripamonti,P Peterlongo,G Roversi,R Cairoli,E Morra,L Larizza Oct. 1, 2000
Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for acutemyeloid leukemia cell proliferation. Pauli C, Liu Y, Rohde C, Cui C, Fijalkowska D, Gerloff D, Walter C, Krijgsveld J, Dugas M, Edemir B, Pabst C, Müller LP, Zhou F, Müller-Tidow C June 4, 2020
The Alazami Syndrome-Associated Protein LARP7 Guides U6 Small Nuclear RNA Modification and Contributes to Splicing Robustness. Daniele Hasler,Rajyalakshmi Meduri,Maciej Bąk,Gerhard Lehmann,Leonhard Heizinger,Xin Wang,Zhi-Tong Li,François M Sement,Astrid Bruckmann,Anne-Catherine Dock-Bregeon,Rainer Merkl,Reinhard Kalb,Eva Grauer,Erdmute Kunstmann,Mihaela Zavolan,Mo-Fang Liu,Utz Fischer,Gunter Meister March 1, 2020
FTO is involved in Alzheimer&#39;s disease by targeting TSC1-mTOR-Tau signaling. Li H, Ren Y, Mao K, Hua F, Yang Y, Wei N, Yue C, Li D, Zhang H March 25, 2018
The obesity related gene, FTO, interacts with APOE, and is associated withAlzheimer&#39;s disease risk: a prospective cohort study. Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L, Graff C Jan. 1, 2011
Genetic variants in the Fat and Obesity Associated (FTO) gene and risk ofAlzheimer&#39;s disease. Reitz C, Tosto G, Mayeux R, Luchsinger JA Jan. 1, 2012
Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Maas S, Patt S, Schrey M, Rich A Dec. 4, 2001
Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for newtherapeutic targets? Donnelly CJ, Grima JC, Sattler R Jan. 1, 2014
Control of human potassium channel inactivation by editing of a small mRNA hairpin. Bhalla T, Rosenthal JJ, Holmgren M, Reenan R Oct. 1, 2004
The mA methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Lu Sheng,Qian Gao,Qiuchan Xiong,Haojie Zhang,Mingqing Wu,Yu Liang,Fengyu Zhu,Yingyin Zhang,Xiuhong Zhang,Quan Yuan, Jan. 18, 2019
Dynamic mA mRNA methylation reveals the role of METTL3-mA-CDCP1 signaling axis in chemical carcinogenesis. Huan Jin,Biao Que,Yinghui Chao,Haiqing Zhang,Xiaoling Ying,Zhongyang Zhou,Zusen Yuan,Jialin Su,Bin Wu,Wenjuan Zhang,Defeng Qi,Demeng Chen,Wang Min,Shuibin Lin, Feb. 22, 2019
A commonly carried allele of the obesity-related FTO gene is associated with reducedbrain volume in the healthy elderly. Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD, Dinov ID, Toga AW, Saykin AJ, Shen L, Foroud T, Pankratz N, Huentelman MJ, Craig DW, Gerber JD, Allen AN, Corneveaux JJ, Stephan DA, DeCarli CS, DeChairo BM, Potkin SG, Jack CR Jr, Weiner MW, Raji CA, Lopez OL, Becker JT, Carmichael OT, Thompson PM May 4, 2010
Principles Governing A-to-I RNA Editing in the Breast Cancer Transcriptome. Debora Fumagalli,David Gacquer,Françoise Rothé,Anne Lefort,Frederick Libert,David Brown,Naima Kheddoumi,Adam Shlien,Tomasz Konopka,Roberto Salgado,Denis Larsimont,Kornelia Polyak,Karen Willard-Gallo,Christine Desmedt,Martine Piccart,Marc Abramowicz,Peter J Campbell,Christos Sotiriou,Vincent Detours Oct. 1, 2015
p53 acts as a safeguard of translational control by regulating fibrillarin and rRNAmethylation in cancer. Marcel V, Ghayad SE, Belin S, Therizols G, Morel AP, Solano-Gonzàlez E, Vendrell JA, Hacot S, Mertani HC, Albaret MA, Bourdon JC, Jordan L, Thompson A, Tafer Y, Cong R, Bouvet P, Saurin JC, Catez F, Prats AC, Puisieux A, Diaz JJ Sept. 9, 2013
HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancervia inhibiting tumor suppressor let-7g. Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W, Ye L Feb. 28, 2018
N-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Brittany A Law,Olga R Ilkayeva,Kristen R Carraway,Christopher L Holley, July 27, 2018
N6-methyladenosine-related Genomic Targets are Altered in Breast Cancer Tissue and Associated with Poor Survival. Xin Liu,Zihui Dong,Jianhao Li,Yan Yu,Xiaolong Chen,Fang Ren,Guangying Cui, Aug. 29, 2019
N6-methyladenosine METTL3 promotes the breast cancer progression via targetingBcl-2. Wang H, Xu B, Shi J Jan. 5, 2020
Transfer RNA demethylase ALKBH3 promotes cancer progression via induction oftRNA-derived small RNAs. Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q, Wang H March 18, 2019
RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure Jain M, Mann TD, Stulić M, Rao SP, Kirsch A, Pullirsch D, Strobl X, Rath C, Reissig L, Moreth K, Klein-Rodewald T, Bekeredjian R, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Pablik E, Cimatti L, Martin D, Zinnanti J, Graier WF, Sibilia M, Frank S, Levanon EY, Jantsch MF Oct. 1, 2018
Genetic associations and regulation of expression indicate an independent role for14q32 snoRNAs in human cardiovascular disease. Håkansson KEJ, Goossens EAC, Trompet S, van Ingen E, de Vries MR, van der Kwast RVCT, Ripa RS, Kastrup J, Hohensinner PJ, Kaun C, Wojta J, Böhringer S, Le Cessie S, Jukema JW, Quax PHA, Nossent AY Aug. 1, 2019
FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Zhou-Lan Bai,Di Xia,Zhi-Jun Zhao,Ren Zhao,Yan-Yang Wang, Feb. 1, 2018
Reduced mA mRNA methylation is correlated with the progression of human cervical cancer. Zenghui Li,Beihua Kong,Chen Song,Jianglin Cong,Jianqing Hou, Oct. 24, 2017
A-to-I RNA editing of BLCAP lost the inhibition to STAT3 activation in cervicalcancer. Chen W, He W, Cai H, Hu B, Zheng C, Ke X, Xie L, Zheng Z, Wu X, Wang H June 13, 2017
mA methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Yikan Cheng,Shubiao Ye,Jianwei Zhang,Runqing Huang,Peisi Li,Huashan Liu,Qiling Deng,Xianrui Wu,Ping Lan, June 4, 2019
METTL14 Suppresses CRC Progression via Regulating N6-Methyladenosine-DependentPrimary miR-375 Processing. Chen X, Xu M, Xu X, Zeng K, Liu X, Sun L, Pan B, He B, Pan Y, Sun H, Xia X, Wang S Feb. 5, 2020
Oncogene c-Myc promotes epitranscriptome mA reader YTHDF1 expression in colorectal cancer. Masamitsu Konno,Ayumu Asai,Jun Koseki,Koichi Kawamoto,Norikatsu Miyoshi,Hidekazu Takahashi,Naohiro Nishida,Naotsugu Haraguchi,Daisuke Sakai,Toshihiro Kudo,Taishi Hata,Chu Matsuda,Tsunekazu Mizushima,Taroh Satoh,Yuichiro Doki,Masaki Mori, Dec. 21, 2017
YTHDF1 Regulates Tumorigenicity and Cancer Stem Cell-Like Activity in Human Colorectal Carcinoma. Chunxing Yang,Runliu Wu,Lihua Huang,Shenlei Song,Wanwan Li,Peichen Yan,Changwei Lin,Daojiang Li, May 3, 2019
RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiencyby which HIF-1α mRNA is translated. Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, Mori M, Sahara H June 28, 2016
RNA editing of apolipoprotein B mRNA. Sequence specificity determined by in vitrocoupled transcription editing. Chen SH, Li XX, Liao WS, Wu JH, Chan L April 25, 1990
mA mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Mark A Eckert,Bryan T Harada,Song-Mei Liu,Zhike Lu,Kangkang Yu,Samantha M Tienda,Agnieszka Chryplewicz,Allen C Zhu,Ying Yang,Jing-Tao Huang,Shao-Min Chen,Zhi-Gao Xu,Xiao-Hua Leng,Xue-Chen Yu,Jie Cao,Zezhou Zhang,Jianzhao Liu,Ernst Lengyel, Aug. 27, 2018
RNA editing of drives early tumor invasion and metastasis in familial esophageal cancer. Yan-Ru Qin,Xiao-Yan Ming,Xian-Bo Zuo,Yu-Wen Diao,Li-Yi Zhang,Jiaoyu Ai,Bei-Lei Liu,Tu-Xiong Huang,Ting-Ting Cao,Bin-Bin Tan,Di Xiang,Chui-Mian Zeng,Jing Gong,Qiangfeng Zhang,Sui-Sui Dong,Juan Chen,Haibo Liu,Jian-Lin Wu,Robert Z Qi,Dan Xie,Li-Dong Wang, May 22, 2017
Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF inesophageal squamous cell carcinoma. Li Y, Li J, Luo M, Zhou C, Shi X, Yang W, Lu Z, Chen Z, Sun N, He J Aug. 28, 2018
ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. Shuai Guo,Hai-Yan Piao,Yue Wang,Yue Wu,Xiang-Yu Meng,Dong Yang,Zhi-Chao Zheng, July 9, 2019
[Knockdown of YTH N(6)-methyladenosine RNA binding protein 2 (YTHDF2) inhibitsproliferation and promotes apoptosis in MGC-803 gastric cancer cells]. Zhang J, Pi J, Liu Y, Yu J, Feng T Dec. 1, 2017
m1A Regulated Genes Modulate PI3K/AKT/mTOR and ErbB Pathways in GastrointestinalCancer. Zhao Y, Zhao Q, Kaboli PJ, Shen J, Li M, Wu X, Yin J, Zhang H, Wu Y, Lin L, Zhang L, Wan L, Wen Q, Li X, Cho CH, Yi T, Li J, Xiao Z Oct. 1, 2019
m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells bySustaining FOXM1 Expression and Cell Proliferation Program. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, Majumder S, He C, Huang S April 10, 2017
m(6)A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of GlioblastomaStem Cells. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, Riggs AD, He C, Shi Y March 14, 2017
N⁶-Methyladenosine Landscape of Glioma Stem-Like Cells: METTL3 Is Essential for theExpression of Actively Transcribed Genes and Sustenance of the Oncogenic Signaling Visvanathan A, Patil V, Abdulla S, Hoheisel JD, Somasundaram K Feb. 13, 2019
Essential role of METTL3-mediated mA modification in glioma stem-like cells maintenance and radioresistance. V Patil,A Arora,A S Hegde,A Arivazhagan,V Santosh, Oct. 9, 2017
High tRNA Transferase NSUN2 Gene Expression is Associated with Poor Prognosis inHead and Neck Squamous Carcinoma. Lu L, Zhu G, Zeng H, Xu Q, Holzmann K April 21, 2018
Hypermethylation of 28S ribosomal RNA in β-thalassemia trait carriers. Sornjai W, Lithanatudom P, Erales J, Joly P, Francina A, Hacot S, Fucharoen S, Svasti S, Diaz JJ, Mertani HC, Smith DR Jan. 1, 2017
Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets. Zi Yin,Baohua Hou,Min Yu,Ruiwan Chen,Haosheng Jin, May 1, 2019
RNA mA methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Guoshi Chai,Yingmin Wu,Jiexin Li,Feng Chen,Jianzhao Liu,Guanzheng Luo,Jordi Tauler,Jun Du,Shuibin Lin,Chuan He, May 6, 2019
MicroRNA-145 Modulates -Methyladenosine Levels by Targeting the 3'-Untranslated mRNA Region of the -Methyladenosine Binding YTH Domain Family 2 Protein. Jiong Li,Guoxing Feng,Shan Gao,Yuan Wang,Shuqin Zhang,Yunxia Liu,Lihong Ye,Yueguo Li, Jan. 19, 2017
YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA inhepatocellular carcinoma. Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, Ma H, Kang T Feb. 1, 2019
Overexpression of YTHDF1 is associated with poor prognosis in patients withhepatocellular carcinoma. Zhao X, Chen Y, Mao Q, Jiang X, Jiang W, Chen J, Xu W, Zhong L, Sun X Jan. 1, 2018
A novel translational repressor mRNA is edited extensively in livers containingtumors caused by the transgene expression of the apoB mRNA-editing enzyme. Yamanaka S, Poksay KS, Arnold KS, Innerarity TL Feb. 1, 1997
Variants in PUS7 Cause Intellectual Disability with Speech Delay, Microcephaly,Short Stature, and Aggressive Behavior. de Brouwer APM, Abou Jamra R, Körtel N, Soyris C, Polla DL, Safra M, Zisso A, Powell CA, Rebelo-Guiomar P, Dinges N, Morin V, Stock M, Hussain M, Shahzad M, Riazuddin S, Ahmed ZM, Pfundt R, Schwarz F, de Boer L, Reis A, Grozeva D, Raymond FL, Riazuddin S, Koolen DA, Minczuk M, Roignant JY, van Bokhoven H, Schwartz S Dec. 6, 2018
Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Li L, Zang L, Zhang F, Chen J, Shen H, Shu L, Liang F, Feng C, Chen D, Tao H, Xu T, Li Z, Kang Y, Wu H, Tang L, Zhang P, Jin P, Shu Q, Li X July 1, 2017
PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Monika Tasak,Sateesh Maddirevula,Ghada M H Abdel-Salam,Inas S M Sayed,Anas M Alazami,Tarfa Al-Sheddi,Eman Alobeid,Eric M Phizicky, Feb. 18, 2019
METTL3 and ALKBH5 oppositely regulate mA modification of mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Xing Feng,Heng Zhang,Yunmei Luo,Juan Huang,Meihua Lin,Junfei Jin,Xue Ding,Shujing Wu,He Huang,Tian Yu,Mukun Zhang,Haiou Hong,Shihua Yao,Yongxiang Zhao, March 17, 2019
Genetic alterations of mA regulators predict poorer survival in acute myeloid leukemia. Amy D Marshall,John E J Rasko, Feb. 2, 2017
The N-methyladenosine (mA)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Brian F Pickering,Yuanming Cheng,Sara Zaccara,Diu Nguyen,Gerard Minuesa,Timothy Chou,Arthur Chow,Yogesh Saletore,Matthew MacKay,Jessica Schulman,Christopher Famulare,Minal Patel,Virginia M Klimek,Francine E Garrett-Bakelman,Ari Melnick,Martin Carroll,Christopher E Mason,Samie R Jaffrey, Sept. 18, 2017
FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N(6)-Methyladenosine RNADemethylase. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, Hong GM, Huang H, Wang X, Chen P, Gurbuxani S, Arnovitz S, Li Y, Li S, Strong J, Neilly MB, Larson RA, Jiang X, Zhang P, Jin J, He C, Chen J Jan. 9, 2017
Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells inAcute Myeloid Leukemia. Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA, Sepulveda C, Vukovic M, Allen L, Sarapuu A, Tavosanis A, Guitart AV, Villacreces A, Much C, Choe J, Azar A, van de Lagemaat LN, Vernimmen D, Nehme A, Mazurier F, Somervaille TCP, Gregory RI, O&#39;Carroll D, Kranc KR July 3, 2019
Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, Ni T, Zhang ZS, Zhang T, Li C, Han L, Zhu Z, Lian F, Wei J, Deng Q, Wang Y, Wunderlich M, Gao Z, Pan G, Zhong D, Zhou H, Zhang N, Gan J, Jiang H, Mulloy JC, Qian Z, Chen J, Yang CG April 15, 2019
Suppression of mA reader Ythdf2 promotes hematopoietic stem cell expansion. Pengxu Qian,Wanqing Shao,Hailing Shi,Xi C He,Madelaine Gogol,Zulin Yu,Yongfu Wang,Meijie Qi,Yunfei Zhu,John M Perry,Kai Zhang,Fang Tao,Kun Zhou,Deqing Hu,Yingli Han,Chongbei Zhao,Richard Alexander,Hanzhang Xu,Shiyuan Chen,Allison Peak,Kathyrn Hall,Michael Peterson,Anoja Perera,Jeffrey S Haug,Tari Parmely,Hua Li,Bin Shen,Julia Zeitlinger,Chuan He, July 31, 2018
METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and PromotesLeukemogenesis via mRNA m(6)A Modification. Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, Shi H, Skibbe J, Shen C, Hu C, Sheng Y, Wang Y, Wunderlich M, Zhang B, Dore LC, Su R, Deng X, Ferchen K, Li C, Sun M, Lu Z, Jiang X, Marcucci G, Mulloy JC, Yang J, Qian Z, Wei M, He C, Chen J Feb. 1, 2018
An association study of the m6A genes with major depressive disorder in Chinese Hanpopulation. Du T, Rao S, Wu L, Ye N, Liu Z, Hu H, Xiu J, Shen Y, Xu Q Sept. 1, 2015
mA mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Jiangbo Wei,Yan-Hong Cui,Gayoung Park,Palak Shah,Yu Deng,Andrew E Aplin,Zhike Lu,Seungmin Hwang,Chuan He, June 25, 2019
RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrixmetallopeptidase 2. Dahal U, Le K, Gupta M Aug. 1, 2019
Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathyand sideroblastic anemia (MLASA). Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N June 1, 2004
RNA modification landscape of the human mitochondrial tRNA regulates protein synthesis. Molly E Evans,Wesley C Clark,Paula Marttinen,Eric A Shoubridge,Anu Suomalainen,Anna Wredenberg,Anna Wedell,Tao Pan, Sept. 27, 2018
Pseudouridine Modification Inhibits Muscleblind-like 1 (MBNL1) Binding to CCUG Repeats and Minimally Structured RNA through Reduced RNA Flexibility. Melissa N Hinman,Jeremy Copperman,Kausiki Datta,Marina Guenza, Jan. 27, 2017
C--&gt;U editing of neurofibromatosis 1 mRNA occurs in tumors that express both thetype II transcript and apobec-1, the catalytic subunit of the apolipoprotein BmRNA-editing enzyme. Mukhopadhyay D, Anant S, Lee RM, Kennedy S, Viskochil D, Davidson NO Jan. 1, 2002
The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Lin S, Choe J, Du P, Triboulet R, Gregory RI May 5, 2016
MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Du M, Zhang Y, Mao Y, Mou J, Zhao J, Xue Q, Wang D, Huang J, Gao S, Gao Y Jan. 22, 2017
mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Shuibin Lin,Wencai Zhang,Qi Liu,Longfei Wang,Julia Ramirez-Moya,Peng Du,Wantae Kim,Shaojun Tang,Piotr Sliz,Pilar Santisteban,Rani E George,William G Richards,Kwok-Kin Wong,Nicolas Locker,Frank J Slack, Sept. 19, 2018
The m6A demethylase FTO promotes the growth of lung cancer cells by regulating them6A level of USP7 mRNA. Li J, Han Y, Zhang H, Qian Z, Jia W, Gao Y, Zheng H, Li B May 7, 2019
m(6)A demethylase FTO facilitates tumor progression in lung squamous cell carcinomaby regulating MZF1 expression. Liu J, Ren D, Du Z, Wang H, Zhang H, Jin Y Aug. 25, 2018
YTH domain family 2 promotes lung cancer cell growth by facilitating6-phosphogluconate dehydrogenase mRNA translation. Sheng H, Li Z, Su S, Sun W, Zhang X, Li L, Li J, Liu S, Lu B, Zhang S, Shan C July 10, 2020
ALKBH5-m(6)A-FOXM1 signaling axis promotes proliferation and invasion of lungadenocarcinoma cells under intermittent hypoxia. Chao Y, Shang J, Ji W Jan. 8, 2020
N(6)-methyladenosine ALKBH5 promotes non-small cell lung cancer progress byregulating TIMP3 stability. Zhu Z, Qian Q, Zhao X, Ma L, Chen P March 20, 2020
Genome-wide association scan shows genetic variants in the FTO gene are associatedwith obesity-related traits. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR July 1, 2007
Mettl3-mediated mA RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Liang Xie,Mengyuan Wang,Qiuchan Xiong,Yuchen Guo,Yu Liang,Jing Li,Rui Sheng,Peng Deng,Yuan Wang,Rixin Zheng,Yizhou Jiang,Ling Ye,Qianming Chen,Xuedong Zhou,Shuibin Lin, Nov. 14, 2018
The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating them6A level of LEF1. Miao W, Chen J, Jia L, Ma J, Song D Aug. 27, 2019
Human ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability inbreast and ovarian cancer cells. Woo HH, Chambers SK Jan. 1, 2019
YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Yaocheng Sun,Xiao Xu,Dawei Wang,Junbo He,Hailang Zhou,Ying Lu,Jian Zeng,Fengyi Du,Aihua Gong, Nov. 14, 2017
Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. Chunyu Yu,Minjun Guo,Xiaotong Zheng,Sakhawat Ali,Hua Huang,Lihua Zhang,Shensen Wang,Yinghui Huang,Shuyan Qie, March 14, 2019
Harnessing human ADAR2 for RNA repair - Recoding a PINK1 mutation rescues mitophagy. Wettengel J, Reautschnig P, Geisler S, Kahle PJ, Stafforst T March 17, 2017
The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Jingyuan Tang,Wen Huang,Feng Wang,Pu Li,Chao Qin,Zhiqiang Qin,Qing Zou,Jifu Wei,Lixin Hua,Haiwei Yang, Oct. 10, 2017
Early-onset epilepsy and postnatal lethality associated with an editing-deficientGluR-B allele in mice. Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R Dec. 8, 1995
A Novel RNA Editing Sensor Tool and a Specific Agonist Determine Neuronal Protein Expression of RNA-Edited Glycine Receptors and Identify a Genomic APOBEC1 Dimorphism as a New Genetic Risk Factor of Epilepsy. Benjamin Förstera,Aline Winkelmann,Pina Knauff,Erich E Wanker,Xintian A You,Marcus Semtner,Florian Hetsch, Jan. 11, 2018
The Treacher Collins syndrome (TCOF1) gene product is involved in pre-rRNAmethylation. Gonzales B, Henning D, So RB, Dixon J, Dixon MJ, Valdez BC July 15, 2005
A common variant in the FTO gene is associated with body mass index and predisposesto childhood and adult obesity. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI May 11, 2007
mA mRNA Methylation Regulates Human β-Cell Biology in Physiological States and in Type 2 Diabetes. Zijie Zhang,Sevim Kahraman,Natalie K Brown,Mengjie Chen,Jiang Hu,Manoj K Gupta,Chuan He, July 29, 2019
Global analysis of A-to-I RNA editing reveals association with common disease variants. Raili Ermel,Katyayani Sukhavasi,Rajeev Jain,Anamika Jain,Christer Betsholtz,Chiara Giannarelli,Jason C Kovacic,Arno Ruusalepp,Josefin Skogsberg,Ke Hao,Eric E Schadt, March 6, 2018
5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, Chen RX, Wei WS, Liu Y, Gao CC, Chen YS, Zhang M, Ma XD, Liu ZW, Luo JH, Lyu C, Wang HL, Ma J, Zhao YL, Zhou FJ, Huang Y, Xie D, Yang YG. Aug. 1, 2019
Cap-specific terminal -methylation of RNA by an RNA polymerase II-associated methyltransferase. Shinichiro Akichika,Seiichi Hirano,Yuichi Shichino,Takeo Suzuki,Hiroshi Nishimasu,Ryuichiro Ishitani,Ai Sugita,Yutaka Hirose,Shintaro Iwasaki,Osamu Nureki,Tsutomu Suzuki Jan. 1, 2019
Identification of the mAm Methyltransferase PCIF1 Reveals the Location and Functions of mAm in the Transcriptome. Konstantinos Boulias,Diana Toczydłowska-Socha,Ben R Hawley,Noa Liberman,Ken Takashima,Sara Zaccara,Théo Guez,Jean-Jacques Vasseur,Françoise Debart,L Aravind,Samie R Jaffrey,Eric Lieberman Greer Aug. 1, 2019
PCIF1 Catalyzes m6Am mRNA Methylation to Regulate Gene Expression. Erdem Sendinc,David Valle-Garcia,Abhinav Dhall,Hao Chen,Telmo Henriques,Jose Navarrete-Perea,Wanqiang Sheng,Steven P Gygi,Karen Adelman,Yang Shi Aug. 1, 2019
The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nhan van Tran,Felix G M Ernst,Ben R Hawley,Christiane Zorbas,Nathalie Ulryck,Philipp Hackert,Katherine E Bohnsack,Markus T Bohnsack,Samie R Jaffrey,Marc Graille,Denis L J Lafontaine Sept. 1, 2019
The rRNA mA methyltransferase METTL5 is involved in pluripotency and developmental programs. Valentina V Ignatova,Paul Stolz,Steffen Kaiser,Tobias H Gustafsson,Palma Rico Lastres,Adrián Sanz-Moreno,Yi-Li Cho,Oana V Amarie,Antonio Aguilar-Pimentel,Tanja Klein-Rodewald,Julia Calzada-Wack,Lore Becker,Susan Marschall,Markus Kraiger,Lillian Garrett,Claudia Seisenberger,Sabine M Hölter,Kayla Borland,Erik Van De Logt,Pascal W T C Jansen,Marijke P Baltissen,Magdalena Valenta,Michiel Vermeulen,Wolfgang Wurst,Valerie Gailus-Durner,Helmut Fuchs,Martin Hrabe de Angelis,Oliver J Rando,Stefanie M Kellner,Sebastian Bultmann,Robert Schneider May 1, 2020
NMethyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Honghui Ma,Xiaoyun Wang,Jiabin Cai,Qing Dai,S Kundhavai Natchiar,Ruitu Lv,Kai Chen,Zhike Lu,Hao Chen,Yujiang Geno Shi,Fei Lan,Jia Fan,Bruno P Klaholz,Tao Pan,Yang Shi,Chuan He Jan. 1, 2019
The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Rita Pinto,Cathrine B Vågbø,Magnus E Jakobsson,Yeji Kim,Marijke P Baltissen,Marie-Françoise O'Donohue,Ulises H Guzmán,Jędrzej M Małecki,Jie Wu,Finn Kirpekar,Jesper V Olsen,Pierre-Emmanuel Gleizes,Michiel Vermeulen,Sebastian A Leidel,Geir Slupphaug,Pål Ø Falnes Jan. 1, 2020
Structure and regulation of ZCCHC4 in mA-methylation of 28S rRNA. Wendan Ren,Jiuwei Lu,Mengjiang Huang,Linfeng Gao,Dongxu Li,Gang Greg Wang,Jikui Song Nov. 1, 2019
N-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Ziyang Hao,Tong Wu,Xiaolong Cui,Pingping Zhu,Caiping Tan,Xiaoyang Dou,Kai-Wen Hsu,Yueh-Te Lin,Pei-Hua Peng,Li-Sheng Zhang,Yawei Gao,Lulu Hu,Hui-Lung Sun,Allen Zhu,Jianzhao Liu,Kou-Juey Wu,Chuan He May 1, 2020
Division of labour: tRNA methylation by the NSun2 tRNA methyltransferases Trm4a and Trm4b in fission yeast. Martin Müller,Anke Samel-Pommerencke,Carine Legrand,Francesca Tuorto,Frank Lyko,Ann E Ehrenhofer-Murray March 1, 2019
Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling. Maria Becker,Sara Müller,Wolfgang Nellen,Tomasz P Jurkowski,Albert Jeltsch,Ann E Ehrenhofer-Murray Dec. 1, 2012
Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase. J G Tokuhisa,P Vijayan,K A Feldmann,J A Browse May 1, 1998
RmtC introduces G1405 methylation in 16S rRNA and confers high-level aminoglycoside resistance on Gram-positive microorganisms. Jun-Ichi Wachino,Keigo Shibayama,Kouji Kimura,Kunikazu Yamane,Satowa Suzuki,Yoshichika Arakawa Oct. 1, 2010
Functionally critical residues in the aminoglycoside resistance-associated methyltransferase RmtC play distinct roles in 30S substrate recognition. Meisam Nosrati,Debayan Dey,Atousa Mehrani,Sarah E Strassler,Natalia Zelinskaya,Eric D Hoffer,Scott M Stagg,Christine M Dunham,Graeme L Conn Nov. 1, 2019
Crystal structure of ErmE - 23S rRNA methyltransferase in macrolide resistance. Alena Stsiapanava,Maria Selmer Oct. 1, 2019
ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA. I D Villsen,B Vester,S Douthwaite Feb. 1, 1999
Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. B Vester,S Douthwaite Nov. 1, 1994
The conformation of 23S rRNA nucleotide A2058 determines its recognition by the ErmE methyltransferase. B Vester,L H Hansen,S Douthwaite June 1, 1995
FICC-Seq: a method for enzyme-specified profiling of methyl-5-uridine in cellular RNA. Jean-Michel Carter,Warren Emmett,Igor Rdl Mozos,Annika Kotter,Mark Helm,Jernej Ule,Shobbir Hussain Nov. 1, 2019
mU54 tRNA Hypomodification by Lack of TRMT2A Drives the Generation of tRNA-Derived Small RNAs. Marisa Pereira,Diana R Ribeiro,Miguel M Pinheiro,Margarida Ferreira,Stefanie Kellner,Ana R Soares March 1, 2021
TRMT2B is responsible for both tRNA and rRNA mU-methylation in human mitochondria. Christopher A Powell,Michal Minczuk April 1, 2020
Mouse Trmt2B protein is a dual specific mitochondrial metyltransferase responsible for mU formation in both tRNA and rRNA. Ivan Laptev,Ekaterina Shvetsova,Sergey Levitskii,Marina Serebryakova,Maria Rubtsova,Alexey Bogdanov,Piotr Kamenski,Petr Sergiev,Olga Dontsova April 1, 2020
Expression and analysis of the SAM-dependent RNA methyltransferase Rsm22 from Saccharomyces cerevisiae. Jahangir Alam,Farah Tazkera Rahman,Shiv K Sah-Teli,Rajaram Venkatesan,M Kristian Koski,Kaija J Autio,J Kalervo Hiltunen,Alexander J Kastaniotis June 1, 2021
The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development. Meijuan Zou,Ying Mu,Xin Chai,Min Ouyang,Long-Jiang Yu,Lixin Zhang,Jörg Meurer,Wei Chi April 1, 2020
METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is required for mitoribosome biogenesis. Lindsey Van Haute,Alan G Hendrick,Aaron R D'Souza,Christopher A Powell,Pedro Rebelo-Guiomar,Michael E Harbour,Shujing Ding,Ian M Fearnley,Byron Andrews,Michal Minczuk Nov. 1, 2019
The human mitochondrial 12S rRNA mC methyltransferase METTL15 is required for mitochondrial function. Hao Chen,Zhennan Shi,Jiaojiao Guo,Kao-Jung Chang,Qianqian Chen,Cong-Hui Yao,Marcia C Haigis,Yang Shi June 1, 2020
METTL15 interacts with the assembly intermediate of murine mitochondrial small ribosomal subunit to form m4C840 12S rRNA residue. Ivan Laptev,Ekaterina Shvetsova,Sergey Levitskii,Marina Serebryakova,Maria Rubtsova,Victor Zgoda,Alexey Bogdanov,Piotr Kamenski,Petr Sergiev,Olga Dontsova Aug. 1, 2020
A Genome-wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation. Jason D Arroyo,Alexis A Jourdain,Sarah E Calvo,Carmine A Ballarano,John G Doench,David E Root,Vamsi K Mootha Dec. 1, 2016
Mammalian nuclear TRUB1, mitochondrial TRUB2, and cytoplasmic PUS10 produce conserved pseudouridine 55 in different sets of tRNA. Shaoni Mukhopadhyay,Manisha Deogharia,Ramesh Gupta Jan. 1, 2021
TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Modi Safra,Ronit Nir,Daneyal Farouq,Ilya Vainberg Slutskin,Schraga Schwartz March 1, 2017
Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Xue-Ling Mao,Zi-Han Li,Meng-Han Huang,Jin-Tao Wang,Jing-Bo Zhou,Qing-Run Li,Hong Xu,Xi-Jin Wang,Xiao-Long Zhou Aug. 1, 2021
Cytosine-5 RNA methylation links protein synthesis to cell metabolism. Nikoletta A Gkatza,Cecilia Castro,Robert F Harvey,Matthias Heiß,Martyna C Popis,Sandra Blanco,Susanne Bornelöv,Abdulrahim A Sajini,Joseph G Gleeson,Julian L Griffin,James A West,Stefanie Kellner,Anne E Willis,Sabine Dietmann,Michaela Frye June 1, 2019
The tRNA methyltransferase NSun2 stabilizes p16INK⁴ mRNA by methylating the 3'-untranslated region of p16. Xiaotian Zhang,Zhenyun Liu,Jie Yi,Hao Tang,Junyue Xing,Minqwei Yu,Tanjun Tong,Yongfeng Shang,Myriam Gorospe,Wengong Wang March 1, 2012
Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Abdulrahim A Sajini,Nila Roy Choudhury,Rebecca E Wagner,Susanne Bornelöv,Tommaso Selmi,Christos Spanos,Sabine Dietmann,Juri Rappsilber,Gracjan Michlewski,Michaela Frye June 1, 2019
Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Jinghui Song,Yuan Zhuang,Chenxu Zhu,Haowei Meng,Bo Lu,Bingteng Xie,Jinying Peng,Mo Li,Chengqi Yi Feb. 1, 2020
The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue. Manisha Deogharia,Shaoni Mukhopadhyay,Archi Joardar,Ramesh Gupta March 1, 2019
Functional organization of box C/D RNA-guided RNA methyltransferase. Zuxiao Yang,Jiayin Wang,Lin Huang,David M J Lilley,Keqiong Ye May 1, 2020
Structural insights into dimethylation of 12S rRNA by TFB1M: indispensable role in translation of mitochondrial genes and mitochondrial function. Xiaodan Liu,Shengqi Shen,Pengzhi Wu,Fudong Li,Xing Liu,Chongyuan Wang,Qingguo Gong,Jihui Wu,Xuebiao Yao,Huafeng Zhang,Yunyu Shi Aug. 1, 2019
Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates. Dan Bar-Yaacov,Idan Frumkin,Yuka Yashiro,Takeshi Chujo,Yuma Ishigami,Yonatan Chemla,Amit Blumberg,Orr Schlesinger,Philipp Bieri,Basil Greber,Nenad Ban,Raz Zarivach,Lital Alfonta,Yitzhak Pilpel,Tsutomu Suzuki,Dan Mishmar Sept. 1, 2016
Distinct substrate specificities of the human tRNA methyltransferases TRMT10A and TRMT10B. Nathan W Howell,Manasses Jora,Benjamin F Jepson,Patrick A Limbach,Jane E Jackman Oct. 1, 2019
Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Y Nagayoshi,T Chujo,S Hirata,H Nakatsuka,C-W Chen,M Takakura,K Miyauchi,Y Ikeuchi,B C Carlyle,R R Kitchen,T Suzuki,F Katsuoka,M Yamamoto,Y Goto,M Tanaka,K Natsume,A C Nairn,T Suzuki,K Tomizawa,F-Y Wei March 1, 2021
1 METTL8 is required for 3-methylcytosine modification in human mitochondrial tRNAs J M Lentini, R Bargabos, C Chen, and D Fu Dec. 1, 2021
Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. Konstantin A Ivanov,Volker Thiel,Jessika C Dobbe,Yvonne van der Meer,Eric J Snijder,John Ziebuhr July 1, 2004
Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Liming Yan,Ji Ge,Litao Zheng,Ying Zhang,Yan Gao,Tao Wang,Yucen Huang,Yunxiang Yang,Shan Gao,Mingyu Li,Zhenyu Liu,Haofeng Wang,Yingjian Li,Yu Chen,Luke W Guddat,Quan Wang,Zihe Rao,Zhiyong Lou Jan. 1, 2021
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14 RNA cap methyltransferase. Souradeep Basu,Tiffany Mak,Rachel Ulferts,Mary Wu,Tom Deegan,Ryo Fujisawa,Kang Wei Tan,Chew Theng Lim,Clovis Basier,Berta Canal,Joseph F Curran,Lucy S Drury,Allison W McClure,Emma L Roberts,Florian Weissmann,Theresa U Zeisner,Rupert Beale,Victoria H Cowling,Michael Howell,Karim Labib,John F X Diffley July 1, 2021
Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Sheng Lin,Hua Chen,Zimin Chen,Fanli Yang,Fei Ye,Yue Zheng,Jing Yang,Xi Lin,Honglu Sun,Lingling Wang,Ao Wen,Haohao Dong,Qingjie Xiao,Dong Deng,Yu Cao,Guangwen Lu May 1, 2021
A High-Throughput Radioactivity-Based Assay for Screening SARS-CoV-2 nsp10-nsp16 Complex. Aliakbar Khalili Yazdi,Fengling Li,Kanchan Devkota,Sumera Perveen,Pegah Ghiabi,Taraneh Hajian,Albina Bolotokova,Masoud Vedadi July 1, 2021
Functional characterization of the mammalian mRNA decapping enzyme hDcp2. Christopher Piccirillo,Richie Khanna,Megerditch Kiledjian Sept. 1, 2003
Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. Erwin van Dijk,Nicolas Cougot,Sylke Meyer,Sylvie Babajko,Elmar Wahle,Bertrand Séraphin Dec. 1, 2002
Multiple mRNA decapping enzymes in mammalian cells. Man-Gen Song,You Li,Megerditch Kiledjian Nov. 1, 2010
The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes S Kramer None
Local cerebral glucose consumption during ethanol withdrawal in the rat: effects of single and multiple episodes and previous convulsive seizures. L Clemmesen,M Ingvar,R Hemmingsen,T G Bolwig June 1, 1988
The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. S Onesti,A D Miller,P Brick Feb. 1, 1995
Stresses that Raise NpA Levels Induce Protective Nucleoside Tetraphosphate Capping of Bacterial RNA. Daniel J Luciano,Rose Levenson-Palmer,Joel G Belasco Sept. 1, 2019
Extensive 5'-surveillance guards against non-canonical NAD-caps of nuclear mRNAs in yeast. Yaqing Zhang,David Kuster,Tobias Schmidt,Daniel Kirrmaier,Gabriele Nübel,David Ibberson,Vladimir Benes,Hans Hombauer,Michael Knop,Andres Jäschke Nov. 1, 2020
"NAD-capQ" detection and quantitation of NAD caps. Ewa Grudzien-Nogalska,Jeremy G Bird,Bryce E Nickels,Megerditch Kiledjian Oct. 1, 2018
Identification of a quality-control mechanism for mRNA 5'-end capping. Xinfu Jiao,Song Xiang,Chanseok Oh,Charles E Martin,Liang Tong,Megerditch Kiledjian Sept. 1, 2010
The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 nudix hydrolase gene is located in peroxisomes. S R AbdelRaheim,J L Cartwright,L Gasmi,A G McLennan April 1, 2001
5' End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding. Xinfu Jiao,Selom K Doamekpor,Jeremy G Bird,Bryce E Nickels,Liang Tong,Ronald P Hart,Megerditch Kiledjian March 1, 2017
Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Ewa Grudzien-Nogalska,Yixuan Wu,Xinfu Jiao,Huijuan Cui,Maria K Mateyak,Ronald P Hart,Liang Tong,Megerditch Kiledjian June 1, 2019
2'-O-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO F Picard-Jean, C Brand, M Tremblay-Létourneau, A Allaire, M C Beaudoin, S Boudreault, C Duval, J Rainville-Sirois , F Robert, J Pelletier, B J Geiss, M Bisaillon March 1, 2018
Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Petra Krafcikova,Jan Silhan,Radim Nencka,Evzen Boura July 1, 2020
High-resolution structures of the SARS-CoV-2 2'--methyltransferase reveal strategies for structure-based inhibitor design. Monica Rosas-Lemus,George Minasov,Ludmilla Shuvalova,Nicole L Inniss,Olga Kiryukhina,Joseph Brunzelle,Karla J F Satchell Sept. 1, 2020
Oncogene c-Myc promotes epitranscriptome mA reader YTHDF1 expression in colorectal cancer. Yujiro Nishizawa,Masamitsu Konno,Ayumu Asai,Jun Koseki,Koichi Kawamoto,Norikatsu Miyoshi,Hidekazu Takahashi,Naohiro Nishida,Naotsugu Haraguchi,Daisuke Sakai,Toshihiro Kudo,Taishi Hata,Chu Matsuda,Tsunekazu Mizushima,Taroh Satoh,Yuichiro Doki,Masaki Mori,Hideshi Ishii Jan. 1, 2018
YTHDF1 Regulates Tumorigenicity and Cancer Stem Cell-Like Activity in Human Colorectal Carcinoma Y Bai, C Yang, R Wu, L Huang, S Song, W Li, P Yan, C Lin, D Li, Y Zhang May 3, 2019
METTL3 Promotes the Proliferation and Mobility of Gastric Cancer Cells S Lin , J Liu, W Jiang, P Wang, C Sun, X Wang, Y Chen, H Wang March 1, 2019
Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. Tong Liu,Sheng Yang,Jing Sui,Si-Yi Xu,Yan-Ping Cheng,Bo Shen,Yan Zhang,Xiao-Mei Zhang,Li-Hong Yin,Yue-Pu Pu,Ge-Yu Liang Jan. 1, 2020
FTO expression is associated with the occurrence of gastric cancer and prognosis. Dong Xu,Weiwei Shao,Yasu Jiang,Xi Wang,Ying Liu,Xianchen Liu Oct. 1, 2017
Expression of Demethylase Genes, FTO and ALKBH1, Is Associated with Prognosis of Gastric Cancer. Yue Li,Danyang Zheng,Fang Wang,Yuxia Xu,Hongyang Yu,Huizhong Zhang June 1, 2019
N⁶-Methyladenosine Landscape of Glioma Stem-Like Cells: METTL3 Is Essential for the Expression of Actively Transcribed Genes and Sustenance of the Oncogenic Signaling. Abhirami Visvanathan,Vikas Patil,Shibla Abdulla,Jörg D Hoheisel,Kumaravel Somasundaram Feb. 1, 2019
Essential role of METTL3-mediated mA modification in glioma stem-like cells maintenance and radioresistance. A Visvanathan,V Patil,A Arora,A S Hegde,A Arivazhagan,V Santosh,K Somasundaram Jan. 1, 2018
Expression and roles of Wilms' tumor 1-associating protein in glioblastoma. Du-Il Jin,Sang Weon Lee,Myoung-Eun Han,Hyun-Jung Kim,Seon-Ae Seo,Gi-Yeong Hur,Shin Jung,Bong-Seon Kim,Sae-Ock Oh Dec. 1, 2012
WTAP Expression Predicts Poor Prognosis in Malignant Glioma Patients. Zhuo Xi,Yixue Xue,Jian Zheng,Xiaobai Liu,Jun Ma,Yunhui Liu Oct. 1, 2016
Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma X Zhao, Y Chen, Q Mao, X Jiang, W Jiang, J Chen , W Xu, L Zhong, X Sun Jan. 1, 2018
Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets Y Zhou, Z Yin, B Hou, M Yu, R Chen, H Jin, Z Jian March 1, 2019
The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression. Z Samaan,S S Anand,S Anand,X Zhang,D Desai,M Rivera,G Pare,L Thabane,C Xie,H Gerstein,J C Engert,I Craig,S Cohen-Woods,V Mohan,R Diaz,X Wang,L Liu,T Corre,M Preisig,Z Kutalik,S Bergmann,P Vollenweider,G Waeber,S Yusuf,D Meyre Dec. 1, 2013
Overview of distinct 5-methylcytosine profiles of messenger RNA in human hepatocellular carcinoma and paired adjacent non-tumor tissues. Qiyao Zhang,Qingyuan Zheng,Xiao Yu,Yuting He,Wenzhi Guo June 1, 2020
NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Yuanbo Hu,Chenbin Chen,Xinya Tong,Sian Chen,Xianjing Hu,Bujian Pan,Xiangwei Sun,Zhiyuan Chen,Xinyu Shi,Yingying Hu,Xian Shen,Xiangyang Xue,Mingdong Lu Sept. 1, 2021
The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation. Ruimeng Yang,Xing Liang,Hui Wang,Miaomiao Guo,Hui Shen,Yongheng Shi,Qiang Liu,Yongwei Sun,Linhua Yang,Ming Zhan Jan. 1, 2021
N1-methyladenosine profiling of long non-coding RNA in colorectal cancer. Liuhong Shi,Wenwen Chen,Zizhen Zhang,Jingyu Chen,Meng Xue July 1, 2021
Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease Khen Khermesh , Anna Maria D'Erchia , Michal Barak , Anita Annese , Chaim Wachtel , Erez Y Levanon , Ernesto Picardi , Eli Eisenberg Feb. 1, 2016
Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing U Kim , Y Wang, T Sanford, Y Zeng, K Nishikura Nov. 1, 1994
Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis H Takuma , S Kwak, T Yoshizawa, I Kanazawa None
Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons Takuto Hideyama, Takenari Yamashita, Hitoshi Aizawa, Shoji Tsuji, Akiyoshi Kakita, Hitoshi Takahashi, Shin Kwak March 1, 2012
Altered Editing of Serotonin 2C Receptor Pre-mRNA in the Prefrontal Cortex of Depressed Suicide Victims Ilona Gurevich, Hadassah Tamir, Victoria Arango, Andrew J. Dwork, J. John Mann, Claudia Schmauss None
Mutations of the RNA-Specific Adenosine Deaminase Gene (DSRAD) Are Involved in Dyschromatosis Symmetrica Hereditaria Yoshinori Miyamura,Tamio Suzuki, Michihiro Kono Katsuhiko, Inagaki ShiroIto, Noriyuki Suzuki, Yasushi Tomita Sept. 1, 2003
Altered adenosine-to-inosine RNA editing in human cancer Nurit Paz, Erez Y Levanon, Ninette Amariglio, Amy B Heimberger, Zvi Ram, Shlomi Constantini, Zohar S Barbash, Konstantin Adamsky, Michal Safran, Avi Hirschberg, Meir Krupsky, Issachar Ben-Dov, Simona Cazacu, Tom Mikkelsen, Chaya Brodie, Eli Eisenberg, Gideon Rechavi Oct. 1, 2007
AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders Vincenzo Salpietro et al. July 12, 2019
RNA editing of the 5-HT2C receptor is reduced in schizophrenia M S Sodhi , P W Burnet, A J Makoff, R W Kerwin, P J Harrison July 1, 2007
Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression D Weissmann, S van der Laan, M D Underwood, N Salvetat, L Cavarec, L Vincent, F Molina, J J Mann, V Arango & J F Pujol None
Increased adenosine-to-inosine RNA editing in rheumatoid arthritis Nikolaos I Vlachogiannis , Aikaterini Gatsiou , Domenico Alessandro Silvestris , Kimon Stamatelopoulos , Maria G Tektonidou , Angela Gallo , Petros P Sfikakis , Konstantinos Stellos None
Human BLCAP transcript: new editing events in normal andcancerous tissues Federica Galeano, Anne Leroy, Claudia Rossetti, Irina Gromova, Philippe Gautier, Liam P. Keegan,Luca Massimi,Concezio Di Rocco,Mary A. O'Connell,Angela Gallo April 10, 2010
Altered editing in cyclic nucleotide phosphodiesterase 8A1 gene transcripts of systemic lupus erythematosus T lymphocytes Robert J Orlowski, Kenneth S O'Rourke, Irene Olorenshaw, Gregory A Hawkins, Stefan Maas, Dama Laxminarayana Nov. 1, 2008
RNA editing (R/G site) and flip–flop splicing of the AMPA receptorsubunit GluR2 in nervous tissue of epilepsy patients W Vollmar, J Gloger, E Berger, G Kortenbruck, R Köhling, E-J Speckmann, U Musshoff March 1, 2004
The Neurofibromatosis Type I Messenger RNA Undergoes Base-Modification RNA Editing G R Skuse, A J Cappione, M Sowden, L J Metheny, H C Smith Feb. 1, 1996
The ADAR protein family Yiannis A Savva, Leila E Rieder, Robert A Reenan Dec. 28, 2012
Conformational Switch Regulates the DNA Cytosine Deaminase Activity of Human APOBEC3B. Shi, K., Demir, O., Carpenter, M.A., Wagner, J., Kurahashi, K., Harris, R.S., Amaro, R.E., Aihara, H. None
Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase. Zegers, I., Gigot, D., van Vliet, F., Tricot, C., Aymerich, S., Bujnicki, J.M., Kosinski, J., Droogmans, L. None
Crystal Structure of Glutamyl-Queuosine Trnaasp Synthetase Complexed with L-Glutamate: Structural Elements Mediating tRNA-Independent Activation of Glutamate and Glutamylation of Trnaasp Anticodon. Blaise, M., Olieric, V., Sauter, C., Lorber, B., Roy, B., Karmakar, S., Banerjee, R., Becker, H.D., Kern, D. None
Structural organization of box C/D RNA-guided RNA methyltransferase. Ye, K., Jia, R., Lin, J., Ju, M., Peng, J., Xu, A., Zhang, L. None
Small-Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer. Bedi, R.K., Huang, D., Eberle, S.A., Wiedmer, L., Sledz, P., Caflisch, A. None
Mechanism of 5' splice site transfer for human spliceosome activation. Charenton, C., Wilkinson, M.E., Nagai, K. None
Molecular basis for transfer RNA recognition by the double-stranded RNA-binding domain of human dihydrouridine synthase 2. Bou-Nader, C., Barraud, P., Pecqueur, L., Perez, J., Velours, C., Shepard, W., Fontecave, M., Tisne, C., Hamdane, D. None
Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Sharma, S., Grudzien-Nogalska, E., Hamilton, K., Jiao, X., Yang, J., Tong, L., Kiledjian, M. None
The Structure of Escherichia coli TcdA (Also Known As CsdL) Reveals a Novel Topology and Provides Insight into the tRNA Binding Surface Required for N(6)-Threonylcarbamoyladenosine Dehydratase Activity. Kim, S., Lee, H., Park, S. None
Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA Kuratani, M., Bessho, Y., Nishimoto, M., Grosjean, H., Yokoyama, S. None
Domain Organization and Crystal Structure of the Catalytic Domain of E.coli RluF, a Pseudouridine Synthase that Acts on 23S rRNA Sunita, S., Zhenxing, H., Swaathi, J., Cygler, M., Matte, A., Sivaraman, J. None
Cap-specific terminal N 6 -methylation of RNA by an RNA polymerase II-associated methyltransferase. Akichika, S., Hirano, S., Shichino, Y., Suzuki, T., Nishimasu, H., Ishitani, R., Sugita, A., Hirose, Y., Iwasaki, S., Nureki, O., Suzuki, T. None
The structure of the TrmE GTP-binding protein and its implications for tRNA modification Scrima, A., Vetter, I.R., Armengod, M.E., Wittinghofer, A. None
Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Dobbyn, H.C., McEwan, P.A., Krause, A., Novak-Frazer, L., Bella, J., O'Keefe, R.T. None
Crystal Structure of the Human tRNA m(1)A58 Methyltransferase-tRNA3(Lys) Complex: Refolding of Substrate tRNA Allows Access to the Methylation Target. Finer-Moore, J., Czudnochowski, N., O'Connell, J.D., Wang, A.L., Stroud, R.M. None
Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. Xu, C., Liu, K., Tempel, W., Demetriades, M., Aik, W., Schofield, C.J., Min, J. None
Structural basis for the dual U4 and U4atac snRNA-binding specificity of spliceosomal protein hPrp31. Liu, S., Ghalei, H., Luhrmann, R., Wahl, M.C. None
The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Teplova, M., Tereshko, V., Sanishvili, R., Joachimiak, A., Bushueva, T., Anderson, W.F., Egli, M. None
Structure and function of archaeal box C/D sRNP core proteins. Aittaleb, M., Rashid, R., Chen, Q., Palmer, J.R., Daniels, C.J., Li, H. None
Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2 Umitsu, M., Nishimasu, H., Noma, A., Suzuki, T., Ishitani, R., Nureki, O. None
Functionally critical residues in the aminoglycoside resistance-associated methyltransferase RmtC play distinct roles in 30S substrate recognition. Nosrati, M., Dey, D., Mehrani, A., Strassler, S.E., Zelinskaya, N., Hoffer, E.D., Stagg, S.M., Dunham, C.M., Conn, G.L. None
Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate Xie, W., Liu, X., Huang, R.H. None
Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex. Zhang, W., Collinet, B., Graille, M., Daugeron, M.C., Lazar, N., Libri, D., Durand, D., van Tilbeurgh, H. None
The Yeast Ribosome Synthesis Factor Emg1 is a Novel Member of the Superfamily of Alpha/Beta Knot Fold Methyltransferases. Leulliot, N., Bohnsack, M.T., Graille, M., Tollervey, D., Van Tilbeurgh, H. None
Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG Gregory, S.T., Demirci, H., Belardinelli, R., Monshupanee, T., Gualerzi, C., Dahlberg, A.E., Jogl, G. None
Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG Gregory, S.T., Demirci, H., Belardinelli, R., Monshupanee, T., Gualerzi, C., Dahlberg, A.E., Jogl, G. None
Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Wang, Q., Wu, J., Wang, H., Gao, Y., Liu, Q., Mu, A., Ji, W., Yan, L., Zhu, Y., Zhu, C., Fang, X., Yang, X., Huang, Y., Gao, H., Liu, F., Ge, J., Sun, Q., Yang, X., Xu, W., Liu, Z., Yang, H., Lou, Z., Jiang, B., Guddat, L.W., Gong, P., Rao, Z. None
Characterization of Two Homologous 2'-O-Methyltransferases Showing Different Specificities for Their tRNA Substrates. Somme, J., Van Laer, B., Roovers, M., Steyaert, J., Versees, W., Droogmans, L. None
Alternate rRNA secondary structures as regulators of translation Feng, S., Li, H., Zhao, J., Pervushin, K., Lowenhaupt, K., Schwartz, T.U., Droge, P. None
The First Structure of an RNA m5C Methyltransferase, Fmu, Provides Insight into Catalytic Mechanism and Specific Binding of RNA Substrate Foster, P.G., Nunes, C.R., Greene, P., Moustakas, D., Stroud, R.M. None
Structural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria. Macmaster, R., Zelinskaya, N., Savic, M., Rankin, C.R., Conn, G.L. None
Crystal Structure of the Human tRNA Guanine Transglycosylase Catalytic Subunit QTRT1. Johannsson, S., Neumann, P., Ficner, R. None
The Structure of the Box C/D Enzyme Reveals Regulation of RNA Methylation. Lapinaite, A., Simon, B., Skjaerven, L., Rakwalska-Bange, M., Gabel, F., Carlomagno, T. None
Crystal structures of human DcpS in ligand-free and m7GDP-bound forms suggest a dynamic mechanism for scavenger mRNA decapping. Chen, N., Walsh, M.A., Liu, Y., Parker, R., Song, H. None
New structural insights reveal an expanded reaction cycle for inositol pyrophosphate hydrolysis by human DIPP1. Zong, G., Jork, N., Hostachy, S., Fiedler, D., Jessen, H.J., Shears, S.B., Wang, H. None
Steroid Receptor RNA Activator (SRA) Modification by the Human Pseudouridine Synthase 1 (hPus1p): RNA Binding, Activity, and Atomic Model Huet, T., Miannay, F.-A., Patton, J.R., Thore, S. None
Structural basis of tRNA agmatinylation essential for AUA codon decoding Osawa, T., Kimura, S., Terasaka, N., Inanaga, H., Suzuki, T., Numata, T. None
Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure. Lesnyak, D.V., Osipiuk, J., Skarina, T., Sergiev, P.V., Bogdanov, A.A., Edwards, A., Savchenko, A., Joachimiak, A., Dontsova, O.A. None
Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase Li, S., Duan, J., Li, D., Yang, B., Dong, M., Ye, K. None
Crystal Structure of the Spliceosomal 15.5Kd Protein Bound to a U4 Snrna Fragment Vidovic, I., Nottrott, S., Hartmuth, K., Luhrmann, R., Ficner, R. None
Structural bases for 16 S rRNA methylation catalyzed by ArmA and RmtB methyltransferases Schmitt, E., Galimand, M., Panvert, M., Courvalin, P., Mechulam, Y. None
The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism. Shaban, N.M., Shi, K., Lauer, K.V., Carpenter, M.A., Richards, C.M., Salamango, D., Wang, J., Lopresti, M.W., Banerjee, S., Levin-Klein, R., Brown, W.L., Aihara, H., Harris, R.S. None
Structural rearrangements in the active site of the Thermus thermophilus 16S rRNA methyltransferase KsgA in a binary complex with 5'-methylthioadenosine. Demirci, H., Belardinelli, R., Seri, E., Gregory, S.T., Gualerzi, C., Dahlberg, A.E., Jogl, G. None
Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate. Shao, Z., Yan, W., Peng, J., Zuo, X., Zou, Y., Li, F., Gong, D., Ma, R., Wu, J., Shi, Y., Zhang, Z., Teng, M., Li, X., Gong, Q. None
Structural and biochemical insights into 2'-O-methylation at the 3'-terminal nucleotide of RNA by Hen1. Mui Chan, C., Zhou, C., Brunzelle, J.S., Huang, R.H. None
Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA Liang, B., Zhou, J., Kahen, E., Terns, R.M., Terns, M.P., Li, H. None
Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes Letoquart, J., Huvelle, E., Wacheul, L., Bourgeois, G., Zorbas, C., Graille, M., Heurgue-Hamard, V., Lafontaine, D.L.J. None
Structure of the 16S rRNA pseudouridine synthase RsuA bound to uracil and UMP. Sivaraman, J., Sauve, V., Larocque, R., Stura, E.A., Schrag, J.D., Cygler, M., Matte, A. None
Structure of a TrmA-RNA complex: A consensus RNA fold contributes to substrate selectivity and catalysis in m5U methyltransferases. Alian, A., Lee, T.T., Griner, S.L., Stroud, R.M., Finer-Moore, J. None
Deep Knot Structure for Construction of Active Site and Cofactor Binding Site of tRNA Modification Enzyme Nureki, O., Watanabe, K., Fukai, S., Ishii, R., Endo, Y., Hori, H., Yokoyama, S. None
Binding of adenosine-based ligands to the MjDim1 rRNA methyltransferase: implications for reaction mechanism and drug design. O'Farrell, H.C., Musayev, F.N., Scarsdale, J.N., Rife, J.P. None
Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Yankova, E., Blackaby, W., Albertella, M., Rak, J., De Braekeleer, E., Tsagkogeorga, G., Pilka, E.S., Aspris, D., Leggate, D., Hendrick, A.G., Webster, N.A., Andrews, B., Fosbeary, R., Guest, P., Irigoyen, N., Eleftheriou, M., Gozdecka, M., Dias, J.M.L., Bannister, A.J., Vick, B., Jeremias, I., Vassiliou, G.S., Rausch, O., Tzelepis, K., Kouzarides, T. None
Structure and function of the antibiotic resistance-mediating methyltransferase AviRb from Streptomyces viridochromogenes Mosbacher, T.G., Bechthold, A., Schulz, G.E. None
Crystal structure of a junction between two Z-DNA helices. de Rosa, M., de Sanctis, D., Rosario, A.L., Archer, M., Rich, A., Athanasiadis, A., Carrondo, M.A. None
Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Xiao, X., Yang, H., Arutiunian, V., Fang, Y., Besse, G., Morimoto, C., Zirkle, B., Chen, X.S. None
Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification. Kim, J., Xiao, H., Koh, J., Wang, Y., Bonanno, J.B., Thomas, K., Babbitt, P.C., Brown, S., Lee, Y.S., Almo, S.C. None
Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Holden, L.G., Prochnow, C., Chang, Y.P., Bransteitter, R., Chelico, L., Sen, U., Stevens, R.C., Goodman, M.F., Chen, X.S. None
Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. Demirci, H., Larsen, L.H., Hansen, T., Rasmussen, A., Cadambi, A., Gregory, S.T., Kirpekar, F., Jogl, G. None
Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Hoang, C., Ferre-D'Amare, A.R. None
Structural basis for methyl transfer by a radical SAM enzyme. Boal, A.K., Grove, T.L., McLaughlin, M.I., Yennawar, N.H., Booker, S.J., Rosenzweig, A.C. None
Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure. Letoquart, J., van Tran, N., Caroline, V., Aleksandrov, A., Lazar, N., van Tilbeurgh, H., Liger, D., Graille, M. None
AID Recognizes Structured DNA for Class Switch Recombination. Qiao, Q., Wang, L., Meng, F.L., Hwang, J.K., Alt, F.W., Wu, H. None
Alternative Conformations of the Archaeal Nop56/58-Fibrillarin Complex Imply Flexibility in Box C/D RNPs. Oruganti, S., Zhang, Y., Li, H., Robinson, H., Terns, M.P., Terns, R.M., Yang, W., Li, H. None
Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nakanishi, K., Bonnefond, L., Kimura, S., Suzuki, T., Ishitani, R., Nureki, O. None
An extended dsRBD is required for post-transcriptional modification in human tRNAs. Bou-Nader, C., Pecqueur, L., Bregeon, D., Kamah, A., Guerineau, V., Golinelli-Pimpaneau, B., Guimaraes, B.G., Fontecave, M., Hamdane, D. None
How U38, 39, and 40 of Many tRNAs Become the Targets for Pseudouridylation by TruA. Hur, S., Stroud, R.M. None
Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Xue, S., Wang, R., Yang, F., Terns, R.M., Terns, M.P., Zhang, X., Maxwell, E.S., Li, H. None
Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Kirchdoerfer, R.N., Ward, A.B. None
Functional Implications for a Prototypical K-Turn Binding Protein from Structural and Dynamical Studies of 15.5K Soss, S.E., Flynn, P.F. None
Solution structure of the RNA recognition domain of METTL3-METTL14 N6-methyladenosine methyltransferase. Huang, J., Dong, X., Gong, Z., Qin, L.Y., Yang, S., Zhu, Y.L., Wang, X., Zhang, D., Zou, T., Yin, P., Tang, C. None
Electrostatic Potential in the tRNA Binding Evolution of Dihydrouridine Synthases. Bou-Nader, C., Bregeon, D., Pecqueur, L., Fontecave, M., Hamdane, D. None
Structural analyses of NudT16-ADP-ribose complexes direct rational design of mutants with improved processing of poly(ADP-ribosyl)ated proteins. Thirawatananond, P., McPherson, R.L., Malhi, J., Nathan, S., Lambrecht, M.J., Brichacek, M., Hergenrother, P.J., Leung, A.K.L., Gabelli, S.B. None
Structure analysis of the conserved methyltransferase domain of human trimethylguanosine synthase TGS1. Monecke, T., Dickmanns, A., Strasser, A., Ficner, R. None
High precision NMR structure of YhhP, a novel Escherichia coli protein implicated in cell division. Katoh, E., Hatta, T., Shindo, H., Ishii, Y., Yamada, H., Mizuno, T., Yamazaki, T. None
Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., Yang, X., Li, J., Yang, H., Liu, Z., Xu, W., Guddat, L.W., Wang, Q., Lou, Z., Rao, Z. None
Structural Insights into HIV-1 Vif-APOBEC3F Interaction. Nakashima, M., Ode, H., Kawamura, T., Kitamura, S., Naganawa, Y., Awazu, H., Tsuzuki, S., Matsuoka, K., Nemoto, M., Hachiya, A., Sugiura, W., Yokomaku, Y., Watanabe, N., Iwatani, Y. None
Structural insights into the RNA methyltransferase domain of METTL16. Ruszkowska, A., Ruszkowski, M., Dauter, Z., Brown, J.A. None
Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe She, M., Decker, C.J., Chen, N., Tumati, S., Parker, R., Song, H. None
Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Spahr, H., Habermann, B., Gustafsson, C.M., Larsson, N.G., Hallberg, B.M. None
High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 amino-terminal domain. Hofler, S., Lukat, P., Blankenfeldt, W., Carlomagno, T. None
The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. van Tran, N., Ernst, F.G.M., Hawley, B.R., Zorbas, C., Ulryck, N., Hackert, P., Bohnsack, K.E., Bohnsack, M.T., Jaffrey, S.R., Graille, M., Lafontaine, D.L.J. None
Structural analysis of human 2'-O-ribose methyltransferases involved in mRNA cap structure formation. Smietanski, M., Werner, M., Purta, E., Kaminska, K.H., Stepinski, J., Darzynkiewicz, E., Nowotny, M., Bujnicki, J.M. None
The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Taylor, A.B., Meyer, B., Leal, B.Z., Kotter, P., Schirf, V., Demeler, B., Hart, P.J., Entian, K.D., Wohnert, J. None
Structural analysis of human 2'-O-ribose methyltransferases involved in mRNA cap structure formation. Smietanski, M., Werner, M., Purta, E., Kaminska, K.H., Stepinski, J., Darzynkiewicz, E., Nowotny, M., Bujnicki, J.M. None
The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL Liu, R.J., Zhou, M., Fang, Z.P., Wang, M., Zhou, X.L., Wang, E.D. None
Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Chen, K.M., Harjes, E., Gross, P.J., Fahmy, A., Lu, Y., Shindo, K., Harris, R.S., Matsuo, H. None
Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis Goto-Ito, S., Ishii, R., Ito, T., Shibata, R., Fusatomi, E., Sekine, S., Bessho, Y., Yokoyama, S. None
Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Boniecki, M.T., Freibert, S.A., Muhlenhoff, U., Lill, R., Cygler, M. None
Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Goto-Ito, S., Ito, T., Kuratani, M., Bessho, Y., Yokoyama, S. None
Structural insights into the molecular mechanism of the m(6)A writer complex. Sledz, P., Jinek, M. None
Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase. Guelorget, A., Roovers, M., Guerineau, V., Barbey, C., Li, X., Golinelli-Pimpaneau, B. None
Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Macbeth, M.R., Schubert, H.L., Vandemark, A.P., Lingam, A.T., Hill, C.P., Bass, B.L. None
Structural and Dynamic Insights into Redundant Function of YTHDF Proteins. Li, Y., Bedi, R.K., Moroz-Omori, E.V., Caflisch, A. None
Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC. Kim, J., Almo, S.C. None
The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. Schluckebier, G., Zhong, P., Stewart, K.D., Kavanaugh, T.J., Abad-Zapatero, C. None
tRNAHis guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases. Hyde, S.J., Eckenroth, B.E., Smith, B.A., Eberley, W.A., Heintz, N.H., Jackman, J.E., Doublie, S. None
Structure of the Yeast tRNA M7G Methylation Complex. Leulliot, N., Chaillet, M., Durand, D., Ulryck, N., Blondeau, K., Van Tilbeurgh, H. None
Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain. Shi, K., Carpenter, M.A., Kurahashi, K., Harris, R.S., Aihara, H. None
First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G. Li, M., Shandilya, S.M., Carpenter, M.A., Rathore, A., Brown, W.L., Perkins, A.L., Harki, D.A., Solberg, J., Hook, D.J., Pandey, K.K., Parniak, M.A., Johnson, J.R., Krogan, N.J., Somasundaran, M., Ali, A., Schiffer, C.A., Harris, R.S. None
1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure. Shaban, N.M., Shi, K., Li, M., Aihara, H., Harris, R.S. None
Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4. Suzuki, Y., Noma, A., Suzuki, T., Ishitani, R., Nureki, O. None
Crystal structure of Mj1640/DUF358 protein reveals a putative SPOUT-class RNA methyltransferase Chen, H.Y., Yuan, Y.A. None
Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex Wang, X., Feng, J., Xue, Y., Guan, Z., Zhang, D., Liu, Z., Gong, Z., Wang, Q., Huang, J., Tang, C., Zou, T., Yin, P. None
Precursor complex structure of pseudouridine synthase TruB suggests coupling of active site perturbations to an RNA-sequestering peripheral protein domain Hoang, C., Hamilton, C.S., Mueller, E.G., Ferre-D'Amare, A.R. None
Structural Insights Into Methyltransferase Ksga Function in 30S Ribosomal Subunit Biogenesis Boehringer, D., O'Farrell, H.C., Rife, J.P., Ban, N. None
Human Abh3 Structure and Key Residues for Oxidative Demethylation to Reverse DNA/RNA Damage. Sundheim, O., Vagbo, C.B., Bjoras, M., Desousa, M.M.L., Talstad, V., Aas, P.A., Drablos, F., Krokan, H.E., Tainer, J.A., Slupphaug, G. None
Crystal structure of the RluD pseudouridine Synthase catalytic module, an enzyme that modifies 23S rRNA and is essential for normal cell growth of Escherichia coli Sivaraman, J., Iannuzzi, P., Cygler, M., Matte, A. None
Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold Kaya, Y., Del Campo, M., Ofengand, J., Malhotra, A. None
Crystal structure of archaeosine tRNA-guanine transglycosylase. Ishitani, R., Nureki, O., Fukai, S., Kijimoto, T., Nameki, N., Watanabe, M., Kondo, H., Sekine, M., Okada, N., Nishimura, S., Yokoyama, S. None
Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Lima, C.D., Wang, L.K., Shuman, S. None
The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. Schluckebier, G., Zhong, P., Stewart, K.D., Kavanaugh, T.J., Abad-Zapatero, C. None
New structural insights reveal an expanded reaction cycle for inositol pyrophosphate hydrolysis by human DIPP1. Zong, G., Jork, N., Hostachy, S., Fiedler, D., Jessen, H.J., Shears, S.B., Wang, H. None
Dimerization of elongator protein 1 is essential for Elongator complex assembly. Xu, H., Lin, Z., Li, F., Diao, W., Dong, C., Zhou, H., Xie, X., Wang, Z., Shen, Y., Long, J. None
Insights into Catalysis by a Knotted TrmD tRNA Methyltransferase. Elkins, P.A., Watts, J.M., Zalacain, M., Van Thiel, A., Vitaszka, P.R., Redlak, M., Andraos-Selim, C., Rastinejad, F., Holmes, W.M. None
Vip1 is a kinase and pyrophosphatase switch that regulates inositol diphosphate signaling. Dollins, D.E., Bai, W., Fridy, P.C., Otto, J.C., Neubauer, J.L., Gattis, S.G., Mehta, K.P.M., York, J.D. None
Nuclear Magnetic Resonance Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity. Byeon, I.J., Byeon, C.H., Wu, T., Mitra, M., Singer, D., Levin, J.G., Gronenborn, A.M. None
Vip1 is a kinase and pyrophosphatase switch that regulates inositol diphosphate signaling. Dollins, D.E., Bai, W., Fridy, P.C., Otto, J.C., Neubauer, J.L., Gattis, S.G., Mehta, K.P.M., York, J.D. None
Sequence preference and structural heterogeneity of BZ junctions. Kim, D., Hur, J., Han, J.H., Ha, S.C., Shin, D., Lee, S., Park, S., Sugiyama, H., Kim, K.K. None
Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA Wang, K.T., Desmolaize, B., Nan, J., Zhang, X.W., Li, L.F., Douthwaite, S., Su, X.D. None
The solution structure of the Zalpha domain of the human RNA editing enzyme ADAR1 reveals a prepositioned binding surface for Z-DNA. Schade, M., Turner, C.J., Kuhne, R., Schmieder, P., Lowenhaupt, K., Herbert, A., Rich, A., Oschkinat, H. None
Structural basis of biological nitrile reduction. Chikwana, V.M., Stec, B., Lee, B.W., de Crecy-Lagard, V., Iwata-Reuyl, D., Swairjo, M.A. None
Architecture of the yeast Elongator complex. Dauden, M.I., Kosinski, J., Kolaj-Robin, O., Desfosses, A., Ori, A., Faux, C., Hoffmann, N.A., Onuma, O.F., Breunig, K.D., Beck, M., Sachse, C., Seraphin, B., Glatt, S., Muller, C.W. None
Structural and Functional Insights Into tRNA Binding and Adenosine N1-Methylation by an Archaeal Trm10 Homologue. Van Laer, B., Roovers, M., Wauters, L., Kasprzak, J.M., Dyzma, M., Deyaert, E., Kumar Singh, R., Feller, A., Bujnicki, J.M., Droogmans, L., Versees, W. None
The elp2 subunit is essential for elongator complex assembly and functional regulation Dong, C., Lin, Z., Diao, W., Li, D., Chu, X., Wang, Z., Zhou, H., Xie, Z., Shen, Y., Long, J. None
Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. Scrima, A., Wittinghofer, A. None
A cytidine deaminase edits C to U in transfer RNAs in Archaea Randau, L., Stanley, B.J., Kohlway, A., Mechta, S., Xiong, Y., Soll, D. None
Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine. Ryu, H., Grove, T.L., Almo, S.C., Kim, J. None
A Unique RNA Fold in the Ruma-RNA-Cofactor Ternary Complex Contributes to Substrate Selectivity and Enzymatic Function Lee, T.T., Agarwalla, S., Stroud, R.M. None
Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6 Liu, R.J., Long, T., Li, J., Li, H., Wang, E.D. None
Structures of RNA 3'-phosphate cyclase bound to ATP reveal the mechanism of nucleotidyl transfer and metal-assisted catalysis. Chakravarty, A.K., Smith, P., Shuman, S. None
Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Kato, M., Araiso, Y., Noma, A., Nagao, A., Suzuki, T., Ishitani, R., Nureki, O. None
Major Reorientation of tRNA Substrates Defines Specificity of Dihydrouridine Synthases. Byrne, R.T., Jenkins, H.T., Peters, D.T., Whelan, F., Stowell, J., Aziz, N., Kasatsky, P., Rodnina, M.V., Koonin, E.V., Konevega, A.L., Antson, A.A. None
Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA Lu, X., Zhang, T., Xu, Z., Liu, S., Zhao, B., Lan, W., Wang, C., Ding, J., Cao, C. None
Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Wang, P., Doxtader, K.A., Nam, Y. None
Crystal Structure of the APOBEC3G Catalytic Domain Reveals Potential Oligomerization Interfaces. Shandilya, S.M., Nalam, M.N., Nalivaika, E.A., Gross, P.J., Valesano, J.C., Shindo, K., Li, M., Munson, M., Royer, W.E., Harjes, E., Kono, T., Matsuo, H., Harris, R.S., Somasundaran, M., Schiffer, C.A. None
The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ{alpha}ADAR1 Ha, S.C., Choi, J., Hwang, H.Y., Rich, A., Kim, Y.G., Kim, K.K. None
Crystal structure of IscA, an iron-sulfur cluster assembly protein from Escherichia coli. Cupp-Vickery, J.R., Silberg, J.J., Ta, D.T., Vickery, L.E. None
Structure of H/ACA RNP Protein Nhp2p Reveals Cis/Trans Isomerization of a Conserved Proline at the RNA and Nop10 Binding Interface. Koo, B.K., Park, C.J., Fernandez, C.F., Chim, N., Ding, Y., Chanfreau, G., Feigon, J. None
In Human Pseudouridine Synthase 1 (hPus1), a C-Terminal Helical Insert Blocks tRNA from Binding in the Same Orientation as in the Pus1 Bacterial Homologue TruA, Consistent with Their Different Target Selectivities. Czudnochowski, N., Wang, A.L., Finer-Moore, J., Stroud, R.M. None
Crystal Structure of the Nosiheptide-Resistance Methyltransferase of Streptomyces actuosus Yang, H., Wang, Z., Shen, Y., Wang, P., Jia, X., Zhao, L., Zhou, P., Gong, R., Li, Z., Yang, Y., Chen, D., Murchie, A.I.H., Xu, Y. None
Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA. Ren, W., Lu, J., Huang, M., Gao, L., Li, D., Wang, G.G., Song, J. None
Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA Capping Apparatus. Gu, M., Rajashankar, K.R., Lima, C.D. None
Electrostatic Potential in the tRNA Binding Evolution of Dihydrouridine Synthases. Bou-Nader, C., Bregeon, D., Pecqueur, L., Fontecave, M., Hamdane, D. None
Structure and function of the bacterial decapping enzyme NudC Hofer, K., Li, S., Abele, F., Frindert, J., Schlotthauer, J., Grawenhoff, J., Du, J., Patel, D.J., Jaschke, A. None
The Crystal Structure of Pyrococcus Abyssi tRNA (Uracil-54, C5)-Methyltransferase Provides Insights Into its tRNA Specificity. Walbott, H., Leulliot, N., Grosjean, H., Golinelli-Pimpaneau, B. None
Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Lima, C.D., Wang, L.K., Shuman, S. None
Functional specialization of domains tandemly duplicated within 16S rRNA methyltransferase RsmC Sunita, S., Purta, E., Durawa, M., Tkaczuk, K.L., Swaathi, J., Bujnicki, J.M., Sivaraman, J. None
Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Fox, N.G., Yu, X., Feng, X., Bailey, H.J., Martelli, A., Nabhan, J.F., Strain-Damerell, C., Bulawa, C., Yue, W.W., Han, S. None
Structure of the Maturing 90S Pre-ribosome in Association with the RNA Exosome. Lau, B., Cheng, J., Flemming, D., La Venuta, G., Berninghausen, O., Beckmann, R., Hurt, E. None
Crystal Structure of the Human tRNA Guanine Transglycosylase Catalytic Subunit QTRT1. Johannsson, S., Neumann, P., Ficner, R. None
Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase Nishimasu, H., Ishitani, R., Yamashita, K., Iwashita, C., Hirata, A., Hori, H., Nureki, O. None
Molecular recognition and modification of the 30S ribosome by the aminoglycoside-resistance methyltransferase NpmA. Dunkle, J.A., Vinal, K., Desai, P.M., Zelinskaya, N., Savic, M., West, D.M., Conn, G.L., Dunham, C.M. None
Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Bussiere, D.E., Muchmore, S.W., Dealwis, C.G., Schluckebier, G., Nienaber, V.L., Edalji, R.P., Walter, K.A., Ladror, U.S., Holzman, T.F., Abad-Zapatero, C. None
Crystal Structure of tRNA N(2),N(2)-Guanosine Dimethyltransferase Trm1 from Pyrococcus horikoshii Ihsanawati, Nishimoto, M., Higashijima, K., Shirouzu, M., Grosjean, H., Bessho, Y., Yokoyama, S. None
Structural and Functional Insights Into the Molecular Mechanism of Rrna M6A Methyltransferase Rlmj. Punekar, A.S., Liljeruhm, J., Shepherd, T.R., Forster, A.C., Selmer, M. None
Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: insight into tRNA recognition and reaction mechanism. Zhou, C., Huang, R.H. None
Structure-function analysis of Escherichia coli MnmG (GidA), a highly conserved tRNA-modifying enzyme. Shi, R., Villarroya, M., Ruiz-Partida, R., Li, Y., Proteau, A., Prado, S., Moukadiri, I., Benitez-Paez, A., Lomas, R., Wagner, J., Matte, A., Velazquez-Campoy, A., Armengod, M.E., Cygler, M. None
Structural analyses of NudT16-ADP-ribose complexes direct rational design of mutants with improved processing of poly(ADP-ribosyl)ated proteins. Thirawatananond, P., McPherson, R.L., Malhi, J., Nathan, S., Lambrecht, M.J., Brichacek, M., Hergenrother, P.J., Leung, A.K.L., Gabelli, S.B. None
Structural insights into dimethylation of 12S rRNA by TFB1M: indispensable role in translation of mitochondrial genes and mitochondrial function. Liu, X., Shen, S., Wu, P., Li, F., Liu, X., Wang, C., Gong, Q., Wu, J., Yao, X., Zhang, H., Shi, Y. None
Structural rearrangements in the active site of the Thermus thermophilus 16S rRNA methyltransferase KsgA in a binary complex with 5'-methylthioadenosine. Demirci, H., Belardinelli, R., Seri, E., Gregory, S.T., Gualerzi, C., Dahlberg, A.E., Jogl, G. None
Characterization of Two Homologous 2'-O-Methyltransferases Showing Different Specificities for Their tRNA Substrates. Somme, J., Van Laer, B., Roovers, M., Steyaert, J., Versees, W., Droogmans, L. None
Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Xue, S., Wang, R., Yang, F., Terns, R.M., Terns, M.P., Zhang, X., Maxwell, E.S., Li, H. None
Substrate tRNA recognition mechanism of a multisite-specific tRNA methyltransferase, Aquifex aeolicus Trm1, based on the X-ray crystal structure Awai, T., Ochi, A., Ihsanawati, Sengoku, T., Hirata, A., Bessho, Y., Yokoyama, S., Hori, H. None
The Crystal Structure of the Z[beta] Domain of the RNA-editing Enzyme ADAR1 Reveals Distinct Conserved Surfaces Among Z-domains. Athanasiadis, A., Placido, D., Maas, S., Brown II, B.A., Lowenhaupt, K., Rich, A. None
Structure of the Kti11/Kti13 Heterodimer and its Double Role in Modifications of tRNA and Eukaryotic Elongation Factor 2. Glatt, S., Zabel, R., Vonkova, I., Kumar, A., Netz, D.J., Pierik, A.J., Rybin, V., Lill, R., Gavin, A., Balbach, J., Breunig, K.D., Muller, C.W. None
Small-Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer. Bedi, R.K., Huang, D., Eberle, S.A., Wiedmer, L., Sledz, P., Caflisch, A. None
Structure of the guanylyltransferase domain of human mRNA capping enzyme. Chu, C., Das, K., Tyminski, J.R., Bauman, J.D., Guan, R., Qiu, W., Montelione, G.T., Arnold, E., Shatkin, A.J. None
Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function Kim, J., Xiao, H., Bonanno, J.B., Kalyanaraman, C., Brown, S., Tang, X., Al-Obaidi, N.F., Patskovsky, Y., Babbitt, P.C., Jacobson, M.P., Lee, Y.-S., Almo, S.C. None
The crystal structure of the Methanocaldococcus jannaschii multifunctional L7Ae RNA-binding protein reveals an induced-fit interaction with the box C/D RNAs. Suryadi, J., Tran, E.J., Maxwell, E.S., Brown, B.A. None
Sequence preference and structural heterogeneity of BZ junctions. Kim, D., Hur, J., Han, J.H., Ha, S.C., Shin, D., Lee, S., Park, S., Sugiyama, H., Kim, K.K. None
Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Holden, L.G., Prochnow, C., Chang, Y.P., Bransteitter, R., Chelico, L., Sen, U., Stevens, R.C., Goodman, M.F., Chen, X.S. None
Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. Mao, D.Y., Neculai, D., Downey, M., Orlicky, S., Haffani, Y.Z., Ceccarelli, D.F., Ho, J.S., Szilard, R.K., Zhang, W., Ho, C.S., Wan, L., Fares, C., Rumpel, S., Kurinov, I., Arrowsmith, C.H., Durocher, D., Sicheri, F. None
Crystal structure of the catalytic domain of RluD, the only rRNA pseudouridine synthase required for normal growth of Escherichia coli Del Campo, M., Ofengand, J., Malhotra, A. None
High-resolution structures of the SARS-CoV-2 2'- O -methyltransferase reveal strategies for structure-based inhibitor design. Rosas-Lemus, M., Minasov, G., Shuvalova, L., Inniss, N.L., Kiryukhina, O., Brunzelle, J., Satchell, K.J.F. None
Crystal structures of the catalytic domains of pseudouridine synthases RluC and RluD from Escherichia coli Mizutani, K., Machida, Y., Unzai, S., Park, S.-Y., Tame, J.R.H. None
The Crystal Structure of Pyrococcus Abyssi tRNA (Uracil-54, C5)-Methyltransferase Provides Insights Into its tRNA Specificity. Walbott, H., Leulliot, N., Grosjean, H., Golinelli-Pimpaneau, B. None
Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Kato, M., Araiso, Y., Noma, A., Nagao, A., Suzuki, T., Ishitani, R., Nureki, O. None
Structural insights into mechanisms of the small RNA methyltransferase HEN1. Huang, Y., Ji, L., Huang, Q., Vassylyev, D.G., Chen, X., Ma, J.B. None
Structure of the Saccharomyces cerevisiae Hrr25:Mam1 monopolin subcomplex reveals a novel kinase regulator. Ye, Q., Ur, S.N., Su, T.Y., Corbett, K.D. None
Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Liu, C., Shi, W., Becker, S.T., Schatz, D.G., Liu, B., Yang, Y. None
Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Mendel, M., Chen, K.M., Homolka, D., Gos, P., Pandey, R.R., McCarthy, A.A., Pillai, R.S. None
Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. Wang, H., Boisvert, D., Kim, K.K., Kim, R., Kim, S.H. None
Structure of tRNA Pseudouridine Synthase TruB and Its RNA Complex: RNA Recognition Through a Combination of Rigid Docking and Induced Fit Pan, H., Agarwalla, S., Moustakas, D.T., Finer-Moore, J., Stroud, R.M. None
Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. Shi, R., Proteau, A., Villarroya, M., Moukadiri, I., Zhang, L., Trempe, J.F., Matte, A., Armengod, M.E., Cygler, M. None
Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Dong, A., Yoder, J.A., Zhang, X., Zhou, L., Bestor, T.H., Cheng, X. None
Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure Hoang, C., Chen, J., Vizthum, C.A., Kandel, J.M., Hamilton, C.S., Mueller, E.G., Ferre-D'Amare, A.R. None
Crystal Structure of Human Pus10, a Novel Pseudouridine Synthase. Mccleverty, C.J., Hornsby, M., Spraggon, G., Kreusch, A. None
Dual conformational recognition by Z-DNA binding protein is important for the B-Z transition process. Park, C., Zheng, X., Park, C.Y., Kim, J., Lee, S.K., Won, H., Choi, J., Kim, Y.G., Choi, H.J. None
Structural basis of tRNA agmatinylation essential for AUA codon decoding Osawa, T., Kimura, S., Terasaka, N., Inanaga, H., Suzuki, T., Numata, T. None
Structure of the Essential MTERF4:NSUN4 Protein Complex Reveals How an MTERF Protein Collaborates to Facilitate rRNA Modification. Yakubovskaya, E., Guja, K.E., Mejia, E., Castano, S., Hambardjieva, E., Choi, W.S., Garcia-Diaz, M. None
The Crystal Structure and Small-Angle X-Ray Analysis of Csdl/Tcda Reveal a New tRNA Binding Motif in the Moeb/E1 Superfamily. Lopez-Estepa, M., Arda, A., Savko, M., Round, A., Shepard, W.E., Bruix, M., Coll, M., Fernandez, F.J., Jimenez-Barbero, J., Vega, M.C. None
The Structure of the Rlmb 23S Rrna Methyltransferase Reveals a New Methyltransferase Fold with a Unique Knot Michel, G., Sauve, V., Larocque, R., Li, Y., Matte, A., Cygler, M. None
Analysis of GTP addition in the reverse (3'-5') direction by human tRNA His guanylyltransferase. Nakamura, A., Wang, D., Komatsu, Y. None
Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. Pham, P., Afif, S.A., Shimoda, M., Maeda, K., Sakaguchi, N., Pedersen, L.C., Goodman, M.F. None
Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications for design of Alzheimer's disease therapeutics Kissinger, C.R., Rejto, P.A., Pelletier, L.A., Thomson, J.A., Showalter, R.E., Abreo, M.A., Agree, C.S., Margosiak, S., Meng, J.J., Aust, R.M., Vanderpool, D., Li, B., Tempczyk-Russell, A., Villafranca, J.E. None
Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Shi, K., Carpenter, M.A., Banerjee, S., Shaban, N.M., Kurahashi, K., Salamango, D.J., McCann, J.L., Starrett, G.J., Duffy, J.V., Demir, O., Amaro, R.E., Harki, D.A., Harris, R.S., Aihara, H. None
Structure of Saccharomyces cerevisiae mitochondrial Qri7 in complex with AMP Tominaga, T., Kobayashi, K., Ishii, R., Ishitani, R., Nureki, O. None
Crystal Structure of the Human tRNA m(1)A58 Methyltransferase-tRNA3(Lys) Complex: Refolding of Substrate tRNA Allows Access to the Methylation Target. Finer-Moore, J., Czudnochowski, N., O'Connell, J.D., Wang, A.L., Stroud, R.M. None
Characterization and structure of the Aquifex aeolicus protein DUF752: a bacterial tRNA-methyltransferase (MnmC2) functioning without the usually fused oxidase domain (MnmC1) Kitamura, A., Nishimoto, M., Sengoku, T., Shibata, R., Jager, G., Bjork, G.R., Grosjean, H., Yokoyama, S., Bessho, Y. None
Crystal Structure of the Avilamycin Resistance-Conferring Methyltransferase Avira from Streptomyces Viridochromogenes Mosbacher, T.G., Bechthold, A., Schulz, G.E. None
The Crystal Structure of E. coli rRNA Pseudouridine Synthase RluE. Pan, H., Ho, J.D., Stroud, R.M., Finer-Moore, J. None
The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. Campanacci, V., Dubois, D.Y., Becker, H.D., Kern, D., Spinelli, S., Valencia, C., Pagot, F., Salomoni, A., Grisel, S., Vincentelli, R., Bignon, C., Lapointe, J., Giege, R., Cambillau, C. None
Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2 Umitsu, M., Nishimasu, H., Noma, A., Suzuki, T., Ishitani, R., Nureki, O. None
Structural insights into dimethylation of 12S rRNA by TFB1M: indispensable role in translation of mitochondrial genes and mitochondrial function. Liu, X., Shen, S., Wu, P., Li, F., Liu, X., Wang, C., Gong, Q., Wu, J., Yao, X., Zhang, H., Shi, Y. None
Structures of RNA 3'-phosphate cyclase bound to ATP reveal the mechanism of nucleotidyl transfer and metal-assisted catalysis. Chakravarty, A.K., Smith, P., Shuman, S. None
Structural and Functional Insights Into tRNA Binding and Adenosine N1-Methylation by an Archaeal Trm10 Homologue. Van Laer, B., Roovers, M., Wauters, L., Kasprzak, J.M., Dyzma, M., Deyaert, E., Kumar Singh, R., Feller, A., Bujnicki, J.M., Droogmans, L., Versees, W. None
The Cbf5-Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Hamma, T., Reichow, S.L., Varani, G., Ferre-D'Amare, A.R. None
Box C/D guide RNAs recognize a maximum of 10 nt of substrates Yang, Z., Lin, J., Ye, K. None
Alternative Tertiary Structure of tRNA for Recognition by a Posttranscriptional Modification Enzyme Ishitani, R., Nureki, O., Nameki, N., Okada, N., Nishimura, S., Yokoyama, S. None
Differentiating analogous tRNA methyltransferases by fragments of the methyl donor. Lahoud, G., Goto-Ito, S., Yoshida, K., Ito, T., Yokoyama, S., Hou, Y.M. None
Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile. Romier, C., Reuter, K., Suck, D., Ficner, R. None
Understanding the Structure, Multimerization, Subcellular Localization and mC Selectivity of a Genomic Mutator and Anti-HIV Factor APOBEC3H. Ito, F., Yang, H., Xiao, X., Li, S.X., Wolfe, A., Zirkle, B., Arutiunian, V., Chen, X.S. None
Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate Meyer, S., Scrima, A., Versees, W., Wittinghofer, A. None
Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon Chimnaronk, S., Forouhar, F., Sakai, J., Yao, M., Tron, C.M., Atta, M., Fontecave, M., Hunt, J.F., Tanaka, I. None
The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain Hallberg, B.M., Ericsson, U.B., Johnson, K.A., Andersen, N.M., Douthwaite, S., Nordlund, P., Beuscher IV, A.E., Erlandsen, H. None
Structural basis for the methylation of G1405 in 16S rRNA by aminoglycoside resistance methyltransferase Sgm from an antibiotic producer: a diversity of active sites in m7G methyltransferases. Husain, N., Tkaczuk, K.L., Tulsidas, S.R., Kaminska, K.H., Cubrilo, S., Maravic-Vlahovicek, G., Bujnicki, J.M., Sivaraman, J. None
Crystal structure of the highly divergent pseudouridine synthase TruD reveals a circular permutation of a conserved fold. Hoang, C., Ferre-D'Amare, A.R. None
Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase. Guelorget, A., Roovers, M., Guerineau, V., Barbey, C., Li, X., Golinelli-Pimpaneau, B. None
Structure of the thiostrepton-resistance methyltransferase-S-adenosyl-L-methionine complex and its interaction with ribosomal RNA Dunstan, M.S., Hang, P.C., Zelinskaya, N.V., Honek, J.F., Conn, G.L. None
Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Lin, S., Chen, H., Chen, Z., Yang, F., Ye, F., Zheng, Y., Yang, J., Lin, X., Sun, H., Wang, L., Wen, A., Dong, H., Xiao, Q., Deng, D., Cao, Y., Lu, G. None
Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. Demirci, H., Larsen, L.H., Hansen, T., Rasmussen, A., Cadambi, A., Gregory, S.T., Kirpekar, F., Jogl, G. None
A Complement to the Modern Crystallographer'S Toolbox: Caged Gadolinium Complexes with Versatile Binding Modes. Stelter, M., Molina, R., Jeudy, S., Kahn, R., Abergel, C., Hermoso, J.A. None
Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A., Rich, A. None
Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G Furukawa, A., Nagata, T., Matsugami, A., Habu, Y., Sugiyama, R., Hayashi, F., Kobayashi, N., Yokoyama, S., Takaku, H., Katahira, M. None
Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Aik, W., Scotti, J.S., Choi, H., Gong, L., Demetriades, M., Schofield, C.J., McDonough, M.A. None
Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. Mao, D.Y., Neculai, D., Downey, M., Orlicky, S., Haffani, Y.Z., Ceccarelli, D.F., Ho, J.S., Szilard, R.K., Zhang, W., Ho, C.S., Wan, L., Fares, C., Rumpel, S., Kurinov, I., Arrowsmith, C.H., Durocher, D., Sicheri, F. None
Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery. Gakh, O., Ranatunga, W., Smith, D.Y., Ahlgren, E.C., Al-Karadaghi, S., Thompson, J.R., Isaya, G. None
Structural and Functional Insights Into the Molecular Mechanism of Rrna M6A Methyltransferase Rlmj. Punekar, A.S., Liljeruhm, J., Shepherd, T.R., Forster, A.C., Selmer, M. None
Crystal Structure of Thermus thermophilus tRNA m(1)A(58) Methyltransferase and Biophysical Characterization of Its Interaction with tRNA. Barraud, P., Golinelli-Pimpaneau, B., Atmanene, C., Sanglier, S., Van Dorsselaer, A., Droogmans, L., Dardel, F., Tisne, C. None
Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation Goto-Ito, S., Ito, T., Kuratani, M., Bessho, Y., Yokoyama, S. None
Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate Meyer, S., Scrima, A., Versees, W., Wittinghofer, A. None
Mechanistic insights into m6A modification of U6 snRNA by human METTL16. Aoyama, T., Yamashita, S., Tomita, K. None
Crystal structure of the human PRPK-TPRKB complex. Li, J., Ma, X., Banerjee, S., Chen, H., Ma, W., Bode, A.M., Dong, Z. None
Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. Xu, C., Liu, K., Tempel, W., Demetriades, M., Aik, W., Schofield, C.J., Min, J. None
Structure of D-tyrosyl-tRNATyr deacylase using home-source Cu Kalpha and moderate-quality iodide-SAD data: structural polymorphism and HEPES-bound enzyme states Yogavel, M., Khan, S., Bhatt, T.K., Sharma, A. None
Sinorhizobium meliloti YrbA binds divalent metal cations using two conserved histidines. Roret, T., Alloing, G., Girardet, J.M., Perrot, T., Dhalleine, T., Couturier, J., Frendo, P., Didierjean, C., Rouhier, N. None
Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy Meyer, S., Bohme, S., Kruger, A., Steinhoff, H.-J., Klare, J.P., Wittinghofer, A. None
Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit. Husain, N., Obranic, S., Koscinski, L., Seetharaman, J., Babic, F., Bujnicki, J.M., Maravic-Vlahovicek, G., Sivaraman, J. None
Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity Gu, M., Fabrega, C., Liu, S.W., Liu, H., Kiledjian, M., Lima, C.D. None
Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Wang, P., Doxtader, K.A., Nam, Y. None
The APOBEC-2 crystal structure and functional implications for the deaminase AID. Prochnow, C., Bransteitter, R., Klein, M.G., Goodman, M.F., Chen, X.S. None
Crystal Structure of tRNA N(2),N(2)-Guanosine Dimethyltransferase Trm1 from Pyrococcus horikoshii Ihsanawati, Nishimoto, M., Higashijima, K., Shirouzu, M., Grosjean, H., Bessho, Y., Yokoyama, S. None
Structural bases for 16 S rRNA methylation catalyzed by ArmA and RmtB methyltransferases Schmitt, E., Galimand, M., Panvert, M., Courvalin, P., Mechulam, Y. None
Crystal structure of ErmE - 23S rRNA methyltransferase in macrolide resistance. Stsiapanava, A., Selmer, M. None
Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Yan, L., Ge, J., Zheng, L., Zhang, Y., Gao, Y., Wang, T., Huang, Y., Yang, Y., Gao, S., Li, M., Liu, Z., Wang, H., Li, Y., Chen, Y., Guddat, L.W., Wang, Q., Rao, Z., Lou, Z. None
Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. Shi, R., Proteau, A., Villarroya, M., Moukadiri, I., Zhang, L., Trempe, J.F., Matte, A., Armengod, M.E., Cygler, M. None
Snapshots of tRNA sulphuration via an adenylated intermediate Numata, T., Ikeuchi, Y., Fukai, S., Suzuki, T., Nureki, O. None
Crystal structure of the FTO protein reveals basis for its substrate specificity Han, Z., Niu, T., Chang, J., Lei, X., Zhao, M., Wang, Q., Cheng, W., Wang, J., Feng, Y., Chai, J. None
Conserved cysteine residues of GidA are essential for biogenesis of 5-carboxymethylaminomethyluridine at tRNA anticodon Osawa, T., Ito, K., Inanaga, H., Nureki, O., Tomita, K., Numata, T. None
ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., Trinchese, F., Gunn-Moore, F., Lue, L.F., Walker, D.G., Kuppusamy, P., Zewier, Z.L., Arancio, O., Stern, D., Yan, S.S., Wu, H. None
Identification and Characterization of the Thermus thermophilus 5-Methylcytidine (m5C) Methyltransferase Modifying 23 S Ribosomal RNA (rRNA) Base C1942. Larsen, L.H., Rasmussen, A., Giessing, A.M., Jogl, G., Kirpekar, F. None
Structure of Protein L7Ae Bound to a K-Turn Derived from an Archaeal Box H/ACA sRNA at 1.8 A Resolution. Hamma, T., Ferre-D'Amare, A. None
The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I. Foster, P.G., Huang, L., Santi, D.V., Stroud, R.M. None
Structural basis of antagonism of human APOBEC3F by HIV-1 Vif. Hu, Y., Desimmie, B.A., Nguyen, H.C., Ziegler, S.J., Cheng, T.C., Chen, J., Wang, J., Wang, H., Zhang, K., Pathak, V.K., Xiong, Y. None
Crystal Structure of Ruma, an Iron-Sulfur Cluster Containing E. Coli Ribosomal RNA 5-Methyluridine Methyltransferase. Lee, T.T., Agarwalla, S., Stroud, R.M. None
Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit. Husain, N., Obranic, S., Koscinski, L., Seetharaman, J., Babic, F., Bujnicki, J.M., Maravic-Vlahovicek, G., Sivaraman, J. None
Conserved cysteine residues of GidA are essential for biogenesis of 5-carboxymethylaminomethyluridine at tRNA anticodon Osawa, T., Ito, K., Inanaga, H., Nureki, O., Tomita, K., Numata, T. None
NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Byeon, I.J., Ahn, J., Mitra, M., Byeon, C.H., Hercik, K., Hritz, J., Charlton, L.M., Levin, J.G., Gronenborn, A.M. None
Structural insights into the molecular mechanism of the m(6)A writer complex. Sledz, P., Jinek, M. None
Defects in t 6 A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Arrondel, C., Missoury, S., Snoek, R., Patat, J., Menara, G., Collinet, B., Liger, D., Durand, D., Gribouval, O., Boyer, O., Buscara, L., Martin, G., Machuca, E., Nevo, F., Lescop, E., Braun, D.A., Boschat, A.C., Sanquer, S., Guerrera, I.C., Revy, P., Parisot, M., Masson, C., Boddaert, N., Charbit, M., Decramer, S., Novo, R., Macher, M.A., Ranchin, B., Bacchetta, J., Laurent, A., Collardeau-Frachon, S., van Eerde, A.M., Hildebrandt, F., Magen, D., Antignac, C., van Tilbeurgh, H., Mollet, G. None
RNA-Protein Mutually Induced Fit: STRUCTURE OF ESCHERICHIA COLI ISOPENTENYL-tRNA TRANSFERASE IN COMPLEX WITH tRNA(Phe). Seif, E., Hallberg, B.M. None
Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase Nishimasu, H., Ishitani, R., Yamashita, K., Iwashita, C., Hirata, A., Hori, H., Nureki, O. None
Structure of Nucleophosmin DNA-binding Domain and Analysis of Its Complex with a G-quadruplex Sequence from the c-MYC Promoter. Gallo, A., Lo Sterzo, C., Mori, M., Di Matteo, A., Bertini, I., Banci, L., Brunori, M., Federici, L. None
Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification. Kim, J., Xiao, H., Koh, J., Wang, Y., Bonanno, J.B., Thomas, K., Babbitt, P.C., Brown, S., Lee, Y.S., Almo, S.C. None
tRNAHis guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases. Hyde, S.J., Eckenroth, B.E., Smith, B.A., Eberley, W.A., Heintz, N.H., Jackman, J.E., Doublie, S. None
Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Yu, L., Petros, A.M., Schnuchel, A., Zhong, P., Severin, J.M., Walter, K., Holzman, T.F., Fesik, S.W. None
Structure of the RNA 3'-phosphate cyclase-adenylate intermediate illuminates nucleotide specificity and covalent nucleotidyl transfer. Tanaka, N., Smith, P., Shuman, S. None
First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G. Li, M., Shandilya, S.M., Carpenter, M.A., Rathore, A., Brown, W.L., Perkins, A.L., Harki, D.A., Solberg, J., Hook, D.J., Pandey, K.K., Parniak, M.A., Johnson, J.R., Krogan, N.J., Somasundaran, M., Ali, A., Schiffer, C.A., Harris, R.S. None
Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain. Shi, K., Carpenter, M.A., Kurahashi, K., Harris, R.S., Aihara, H. None
High-resolution structures of the SARS-CoV-2 2'- O -methyltransferase reveal strategies for structure-based inhibitor design. Rosas-Lemus, M., Minasov, G., Shuvalova, L., Inniss, N.L., Kiryukhina, O., Brunzelle, J., Satchell, K.J.F. None
Crystal structure of the bifunctional tRNA modification enzyme MnmC from Escherichia coli Kitamura, A., Sengoku, T., Nishimoto, M., Yokoyama, S., Bessho, Y. None
The Elongator Subcomplex Elp456 is a Hexameric Reca-Like ATPase. Glatt, S., Letoquart, J., Faux, C., Taylor, N.M.I., Seraphin, B., Muller, C.W. None
Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Maiti, A., Myint, W., Kanai, T., Delviks-Frankenberry, K., Sierra Rodriguez, C., Pathak, V.K., Schiffer, C.A., Matsuo, H. None
Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Byrne, R.T., Jenkins, H.T., Peters, D.T., Whelan, F., Stowell, J., Aziz, N., Kasatsky, P., Rodnina, M.V., Koonin, E.V., Konevega, A.L., Antson, A.A. None
Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition Feng, C., Liu, Y., Wang, G., Deng, Z., Zhang, Q., Wu, W., Tong, Y., Cheng, C., Chen, Z. None
Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Liu, S., Li, P., Dybkov, O., Nottrott, S., Hartmuth, K., Luhrmann, R., Carlomagno, T., Wahl, M.C. None
A Left-Handed RNA Double Helix Bound by the Zalpha Domain of the RNA-Editing Enzyme ADAR1. Placido, D., Brown, B.A., Lowenhaupt, K., Rich, A., Athanasiadis, A. None
Crystal structure of an RluF-RNA complex: a base-pair rearrangement is the key to selectivity of RluF for U2604 of the ribosome. Alian, A., DeGiovanni, A., Griner, S.L., Finer-Moore, J.S., Stroud, R.M. None
Structural basis of nucleic acid recognition and 6mA demethylation by human ALKBH1. Tian, L.F., Liu, Y.P., Chen, L., Tang, Q., Wu, W., Sun, W., Chen, Z., Yan, X.X. None
Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies. Ziegler, S.J., Liu, C., Landau, M., Buzovetsky, O., Desimmie, B.A., Zhao, Q., Sasaki, T., Burdick, R.C., Pathak, V.K., Anderson, K.S., Xiong, Y. None
The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL Liu, R.J., Zhou, M., Fang, Z.P., Wang, M., Zhou, X.L., Wang, E.D. None
Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition Feng, C., Liu, Y., Wang, G., Deng, Z., Zhang, Q., Wu, W., Tong, Y., Cheng, C., Chen, Z. None
Structure of the Kti11/Kti13 Heterodimer and its Double Role in Modifications of tRNA and Eukaryotic Elongation Factor 2. Glatt, S., Zabel, R., Vonkova, I., Kumar, A., Netz, D.J., Pierik, A.J., Rybin, V., Lill, R., Gavin, A., Balbach, J., Breunig, K.D., Muller, C.W. None
The Crystal Structure of the Methanocaldococcus jannaschii Multifunctional L7Ae RNA-Binding Protein Reveals an Induced-Fit Interaction with the Box C/D RNAs. Suryadi, J., Tran, E.J., Maxwell, E.S., Brown II, B.A. None
X-ray structure of tRNA pseudouridine synthase TruD reveals an inserted domain with a novel fold Ericsson, U.B., Nordlund, P., Hallberg, B.M. None
Crystal Structure of RNA 3'-Terminal Phosphate Cyclase, a Ubiquitous Enzyme with Unusual Topology Palm, G.J., Billy, E., Filipowicz, W., Wlodawer, A. None
Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life. Fislage, M., Roovers, M., Tuszynska, I., Bujnicki, J.M., Droogmans, L., Versees, W. None
hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA. Eichhorn, C.D., Chug, R., Feigon, J. None
Structure of the Saccharomyces cerevisiae Hrr25:Mam1 monopolin subcomplex reveals a novel kinase regulator. Ye, Q., Ur, S.N., Su, T.Y., Corbett, K.D. None
Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Monecke, T., Dickmanns, A., Ficner, R. None
Comparative analysis of the 15.5kD box C/D snoRNP core protein in the primitive eukaryote Giardia lamblia reveals unique structural and functional features. Biswas, S., Buhrman, G., Gagnon, K., Mattos, C., Brown, B.A., Maxwell, E.S. None
Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Nakanishi, K., Fukai, S., Ikeuchi, Y., Soma, A., Sekine, Y., Suzuki, T., Nureki, O. None
Structural basis of 7SK RNA 5'-gamma-phosphate methylation and retention by MePCE. Yang, Y., Eichhorn, C.D., Wang, Y., Cascio, D., Feigon, J. None
A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Barraud, P., Banerjee, S., Mohamed, W.I., Jantsch, M.F., Allain, F.H. None
Structural and functional divergence within the Dim1/KsgA family of rRNA methyltransferases. Pulicherla, N., Pogorzala, L.A., Xu, Z., O Farrell, H.C., Musayev, F.N., Scarsdale, J.N., Sia, E.A., Culver, G.M., Rife, J.P. None
An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model Harjes, E., Gross, P.J., Chen, K.M., Lu, Y., Shindo, K., Nowarski, R., Gross, J.D., Kotler, M., Harris, R.S., Matsuo, H. None
Structural Basis for the Discriminative Recognition of N6-Methyladenosine RNA by the Human YT521-B Homology Domain Family of Proteins. Xu, C., Liu, K., Ahmed, H., Loppnau, P., Schapira, M., Min, J. None
DrosophilaYBX1 homolog YPS promotes ovarian germ line stem cell development by preferentially recognizing 5-methylcytosine RNAs. Zou, F., Tu, R., Duan, B., Yang, Z., Ping, Z., Song, X., Chen, S., Price, A., Li, H., Scott, A., Perera, A., Li, S., Xie, T. None
Crystal Structure of IscS, a Cysteine Desulfurase from Escherichia coli Cupp-Vickery, J.R., Urbina, H., Vickery, L.E. None
Structural Investigations on the Interactions between Cytidine Deaminase Human APOBEC3G and DNA. Yan, X., Lan, W., Wang, C., Cao, C. None
Molecular Interactions of a DNA Modifying Enzyme APOBEC3F Catalytic Domain with a Single-Stranded DNA. Fang, Y., Xiao, X., Li, S.X., Wolfe, A., Chen, X.S. None
Structure of the Shq1-Cbf5-Nop10-Gar1 complex and implications for H/ACA RNP biogenesis and dyskeratosis congenita Li, S., Duan, J., Li, D., Ma, S., Ye, K. None
Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Newman, J.A., Douangamath, A., Yadzani, S., Yosaatmadja, Y., Aimon, A., Brandao-Neto, J., Dunnett, L., Gorrie-Stone, T., Skyner, R., Fearon, D., Schapira, M., von Delft, F., Gileadi, O. None
How U38, 39, and 40 of Many tRNAs Become the Targets for Pseudouridylation by TruA. Hur, S., Stroud, R.M. None
Molecular Basis of Box C/D RNA-Protein Interactions; Cocrystal Structure of Archaeal L7Ae and a Box C/D RNA. Moore, T., Zhang, Y., Fenley, M.O., Li, H. None
Snapshots of tRNA sulphuration via an adenylated intermediate Numata, T., Ikeuchi, Y., Fukai, S., Suzuki, T., Nureki, O. None
Steroid Receptor RNA Activator (SRA) Modification by the Human Pseudouridine Synthase 1 (hPus1p): RNA Binding, Activity, and Atomic Model Huet, T., Miannay, F.-A., Patton, J.R., Thore, S. None
1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure. Shaban, N.M., Shi, K., Li, M., Aihara, H., Harris, R.S. None
Structural study of the H/ACA snoRNP components Nop10p and the 3' hairpin of U65 snoRNA Khanna, M., Wu, H., Johansson, C., Caizergues-Ferrer, M., Feigon, J. None
Crystal structure of elongator subcomplex Elp4-6 Lin, Z., Zhao, W., Diao, W., Xie, X., Wang, Z., Zhang, J., Shen, Y., Long, J. None
S-Adenosyl-S-carboxymethyl-L-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA. Byrne, R.T., Whelan, F., Aller, P., Bird, L.E., Dowle, A., Lobley, C.M., Reddivari, Y., Nettleship, J.E., Owens, R.J., Antson, A.A., Waterman, D.G. None
Crystal structure of human cytoplasmic tRNAHis-specific 5'-monomethylphosphate capping enzyme. Liu, Y., Martinez, A., Yamashita, S., Tomita, K. None
The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. Wolfe, A.D., Li, S., Goedderz, C., Chen, X.S. None
Crystal structure of YecO from Haemophilus influenzae (HI0319) reveals a methyltransferase fold and a bound S-adenosylhomocysteine. Lim, K., Zhang, H., Tempczyk, A., Bonander, N., Toedt, J., Howard, A., Eisenstein, E., Herzberg, O. None
From bacterial to human dihydrouridine synthase: automated structure determination. Whelan, F., Jenkins, H.T., Griffiths, S.C., Byrne, R.T., Dodson, E.J., Antson, A.A. None
Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Lin, J., Lai, S., Jia, R., Xu, A., Zhang, L., Lu, J., Ye, K. None
Structural Basis for Regulation of METTL16, an S-Adenosylmethionine Homeostasis Factor. Doxtader, K.A., Wang, P., Scarborough, A.M., Seo, D., Conrad, N.K., Nam, Y. None
Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification. Pastore, C., Topalidou, I., Forouhar, F., Yan, A.C., Levy, M., Hunt, J.F. None
METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. Moroz-Omori, E.V., Huang, D., Kumar Bedi, R., Cheriyamkunnel, S.J., Bochenkova, E., Dolbois, A., Rzeczkowski, M.D., Li, Y., Wiedmer, L., Caflisch, A. None
Crystal structure of RlmAI: implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site. Das, K., Acton, T., Chiang, Y., Shih, L., Arnold, E., Montelione, G.T. None
Structural and functional divergence within the Dim1/KsgA family of rRNA methyltransferases. Pulicherla, N., Pogorzala, L.A., Xu, Z., O Farrell, H.C., Musayev, F.N., Scarsdale, J.N., Sia, E.A., Culver, G.M., Rife, J.P. None
The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ{alpha}ADAR1 Ha, S.C., Choi, J., Hwang, H.Y., Rich, A., Kim, Y.G., Kim, K.K. None
Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions. Cory, S.A., Van Vranken, J.G., Brignole, E.J., Patra, S., Winge, D.R., Drennan, C.L., Rutter, J., Barondeau, D.P. None
Structural basis for nucleotide recognition by the ectoenzyme CD203c. Gorelik, A., Randriamihaja, A., Illes, K., Nagar, B. None
Conformational Stability Adaptation of a Double-Stranded RNA-Binding Domain to Transfer RNA Ligand. Bou-Nader, C., Pecqueur, L., Barraud, P., Fontecave, M., Tisne, C., Sacquin-Mora, S., Hamdane, D. None
Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Thomas, S.R., Keller, C.A., Szyk, A., Cannon, J.R., Laronde-Leblanc, N.A. None
Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Kim, J., Malashkevich, V., Roday, S., Lisbin, M., Schramm, V.L., Almo, S.C. None
Structural and functional characterization of Rv2966c protein reveals an RsmD-like methyltransferase from Mycobacterium tuberculosis and the role of its N-terminal domain in target recognition Kumar, A., Saigal, K., Malhotra, K., Sinha, K.M., Taneja, B. None
Structure and function of the bacterial decapping enzyme NudC. Hofer, K., Li, S., Abele, F., Frindert, J., Schlotthauer, J., Grawenhoff, J., Du, J., Patel, D.J., Jaschke, A. None
Crystal and solution structures of methyltransferase RsmH provide basis for methylation of C1402 in 16S rRNA. Wei, Y., Zhang, H., Gao, Z.Q., Wang, W.J., Shtykova, E.V., Xu, J.H., Liu, Q.S., Dong, Y.H. None
Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity Gu, M., Fabrega, C., Liu, S.W., Liu, H., Kiledjian, M., Lima, C.D. None
Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification. Pastore, C., Topalidou, I., Forouhar, F., Yan, A.C., Levy, M., Hunt, J.F. None
Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Ha, S.C., Lowenhaupt, K., Rich, A., Kim, Y.G., Kim, K.K. None
Crystal Structure of the DNA Cytosine Deaminase APOBEC3F: The Catalytically Active and HIV-1 Vif-Binding Domain. Bohn, M.F., Shandilya, S.M., Albin, J.S., Kouno, T., Anderson, B.D., McDougle, R.M., Carpenter, M.A., Rathore, A., Evans, L., Davis, A.N., Zhang, J., Lu, Y., Somasundaran, M., Matsuo, H., Harris, R.S., Schiffer, C.A. None
Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Thomas, S.R., Keller, C.A., Szyk, A., Cannon, J.R., Laronde-Leblanc, N.A. None
Substrate tRNA recognition mechanism of a multisite-specific tRNA methyltransferase, Aquifex aeolicus Trm1, based on the X-ray crystal structure Awai, T., Ochi, A., Ihsanawati, Sengoku, T., Hirata, A., Bessho, Y., Yokoyama, S., Hori, H. None
Box C/D guide RNAs recognize a maximum of 10 nt of substrates Yang, Z., Lin, J., Ye, K. None
Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Mendel, M., Chen, K.M., Homolka, D., Gos, P., Pandey, R.R., McCarthy, A.A., Pillai, R.S. None
Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA Liang, B., Zhou, J., Kahen, E., Terns, R.M., Terns, M.P., Li, H. None
Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes Sunita, S., Tkaczuk, K.L., Purta, E., Kasprzak, J.M., Douthwaite, S., Bujnicki, J.M., Sivaraman, J. None
Structural basis for the methylation of G1405 in 16S rRNA by aminoglycoside resistance methyltransferase Sgm from an antibiotic producer: a diversity of active sites in m7G methyltransferases. Husain, N., Tkaczuk, K.L., Tulsidas, S.R., Kaminska, K.H., Cubrilo, S., Maravic-Vlahovicek, G., Bujnicki, J.M., Sivaraman, J. None
Binding of adenosine-based ligands to the MjDim1 rRNA methyltransferase: implications for reaction mechanism and drug design. O'Farrell, H.C., Musayev, F.N., Scarsdale, J.N., Rife, J.P. None
Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Yan, L., Yang, Y., Li, M., Zhang, Y., Zheng, L., Ge, J., Huang, Y.C., Liu, Z., Wang, T., Gao, S., Zhang, R., Huang, Y.Y., Guddat, L.W., Gao, Y., Rao, Z., Lou, Z. None
Pyruvate formate lyase is structurally homologous to type I ribonucleotide reductase. Leppanen, V.M., Merckel, M.C., Ollis, D.L., Wong, K.K., Kozarich, J.W., Goldman, A. None
The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Kitamura, S., Ode, H., Nakashima, M., Imahashi, M., Naganawa, Y., Kurosawa, T., Yokomaku, Y., Yamane, T., Watanabe, N., Suzuki, A., Sugiura, W., Iwatani, Y. None
Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon Chimnaronk, S., Forouhar, F., Sakai, J., Yao, M., Tron, C.M., Atta, M., Fontecave, M., Hunt, J.F., Tanaka, I. None
Structural Basis for the Specificity of Human Nudt16 and its Regulation by Inosine Monophosphate. Tresaugues, L., Lundback, T., Welin, M., Flodin, S., Nyman, T., Silvander, C., Graslund, S., Nordlund, P. None
AID Recognizes Structured DNA for Class Switch Recombination. Qiao, Q., Wang, L., Meng, F.L., Hwang, J.K., Alt, F.W., Wu, H. None
Decapping Enzyme NUDT12 Partners with BLMH for Cytoplasmic Surveillance of NAD-Capped RNAs. Wu, H., Li, L., Chen, K.M., Homolka, D., Gos, P., Fleury-Olela, F., McCarthy, A.A., Pillai, R.S. None
Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. Demirci, H., Larsen, L.H., Hansen, T., Rasmussen, A., Cadambi, A., Gregory, S.T., Kirpekar, F., Jogl, G. None
Crystal structure of Rv2118c: an AdoMet-dependent methyltransferase from Mycobacterium tuberculosis H37Rv. Gupta, A., Kumar, P.H., Dineshkumar, T.K., Varshney, U., Subramanya, H.S. None
Control of Substrate Specificity by a Single Active Site Residue of the KsgA Methyltransferase. O'Farrell, H.C., Musayev, F.N., Scarsdale, J.N., Rife, J.P. None
Conformational Switch Regulates the DNA Cytosine Deaminase Activity of Human APOBEC3B. Shi, K., Demir, O., Carpenter, M.A., Wagner, J., Kurahashi, K., Harris, R.S., Amaro, R.E., Aihara, H. None
Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario. Bou-Nader, C., Montemont, H., Guerineau, V., Jean-Jean, O., Bregeon, D., Hamdane, D. None
Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli O'Farrell, H.C., Scarsdale, J.N., Rife, J.P. None
Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F. Siu, K.K., Sultana, A., Azimi, F.C., Lee, J.E. None
Crystal structure of the apo forms of psi 55 tRNA pseudouridine synthase from Mycobacterium tuberculosis: a hinge at the base of the catalytic cleft. Chaudhuri, B.N., Chan, S., Perry, L.J., Yeates, T.O. None
Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5. Goto-Ito, S., Ito, T., Ishii, R., Muto, Y., Bessho, Y., Yokoyama, S. None
Solution structure of Kti11p from Saccharomyces cerevisiae reveals a novel zinc-binding module. Sun, J., Zhang, J., Wu, F., Xu, C., Li, S., Zhao, W., Wu, Z., Wu, J., Zhou, C.Z., Shi, Y. None
RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon Chimnaronk, S., Suzuki, T., Manita, T., Ikeuchi, Y., Yao, M., Suzuki, T., Tanaka, I. None
Structure of dihydrouridine synthase C (DusC) from Escherichia coli Chen, M., Yu, J., Tanaka, Y., Tanaka, M., Tanaka, I., Yao, M. None
Structural Investigations on the Interactions between Cytidine Deaminase Human APOBEC3G and DNA. Yan, X., Lan, W., Wang, C., Cao, C. None
Structural Basis for Sulfur Relay to RNA Mediated by Heterohexameric TusBCD Complex Numata, T., Fukai, S., Ikeuchi, Y., Suzuki, T., Nureki, O. None
CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid Lu, J., Cao, Q., Hughes, M.P., Sawaya, M.R., Boyer, D.R., Cascio, D., Eisenberg, D.S. Jan. 1, 2020
Structural and catalytic roles of the human 18SrRNA methyltransferases DIMT1 in ribosome assembly and translation Shen, H., Stoute, J., Liu, K.F Jan. 1, 2020
Molecular basis of tRNA recognition by the Elongator complex. Dauden, M.I., Jaciuk, M., Weis, F., Lin, T.Y., Kleindienst, C., Abbassi, N.E.H., Khatter, H., Krutyholowa, R., Breunig, K.D., Kosinski, J., Muller, C.W., Glatt, S. Jan. 1, 2019
Characterization of novel human Intragenic Antimicrobial Peptides, incorporation and release studies from ureasil-polyether hybrid matrix Mariano, G.H., Gomes de Sa, L.G., Carmo da Silva, E.M., Santos, M.A., Cardozo Fh, J., Lira, B.O.V., Barbosa, E.A., Araujo, A.R., Leite, J.R.S.A., Ramada, M.H.S., Bloch Jr., C., Oliveira, A.L., Chaker, J.A., Brand, G.D. Jan. 1, 2020
Molecular architecture of the human U4/U6.U5 tri-snRNP. Agafonov, D.E., Kastner, B., Dybkov, O., Hofele, R.V., Liu, W.T., Urlaub, H., Luhrmann, R., Stark, H. Jan. 1, 2016
Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation Bertram, K., Agafonov, D.E., Dybkov, O., Haselbach, D., Leelaram, M.N., Will, C.L., Urlaub, H., Kastner, B., Luhrmann, R., Stark, H. Jan. 1, 2017
Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Zhan, X., Yan, C., Zhang, X., Lei, J., Shi, Y. Jan. 1, 2018
Visualizing the Assembly Pathway of Nucleolar Pre-60S Ribosomes. Kater, L., Thoms, M., Barrio-Garcia, C., Cheng, J., Ismail, S., Ahmed, Y.L., Bange, G., Kressler, D., Berninghausen, O., Sinning, I., Hurt, E., Beckmann, R. Jan. 1, 2017
RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function Tim D. Werry , Richard Loiacono, Patrick M. Sexton, Arthur Christopoulos June 1, 2008
Editing modifies the GABAA receptor subunit α3 Johan Ohlson, Jakob Skou Pedersen, David Haussler, and Marie Öhman1 May 1, 2007
The expansion of Inosine at the wobble position of tRNAs, and its role in the evolution of proteomes Àlbert Rafels-Ybern, Adrian Gabriel Torres, Noelia Camacho, Andrea Herencia-Ropero , Helena Roura Frigolé, Thomas F. Wulff, Marina Raboteg, Albert Bordons , Xavier Grau-Bove, Iñaki Ruiz-Trillo , Lluís Ribas de Pouplana April 1, 2019
A limited number of pseudouridine residues in the human atac spliceosomal UsnRNAs as compared to human major spliceosomal UsnRNAs S Massenet, C Branlant Jan. 1, 1999
Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control Satoh, T., Toshimori, T., Noda, M., Uchiyama, S., Kato, K. Jan. 1, 2016
Archtecture of the yeast small subunit processome Chaker-Margot, M., Barandun, J., Hunziker, M., Klinge, S. Jan. 1, 2017
The complete structure of small.subunit processome Barandun, J., Chaker-Margot, M., Hunziker, M., Molloy, K.R., Chait, B.T., Klinge, S. None
Molecular architecture of the 90S small subunit pre-ribosome Sun, Q., Zhu, X., Qi, J., An, W., Lan, P., Tan, D., Chen, R., Wang, B., Zheng, S., Zhang, C., Chen, X., Zhang, W., Chen, J., Dong, M.Q., Ye, K. None
Cryo-EM structure of 90 S small ribosomal subunit precursors in transition states. Du, Y., An, W., Zhu, X., Sun, Q., Qi, J., Ye, K. Jan. 1, 2020
90 S pre-ribosome transformation into the primordial 40 S subunit. Cheng, J., Lau, B., La Venuta, G., Ameismeier, M., Berninghausen, O., Hurt, E., Beckmann, R. Jan. 1, 2020
Conformational switches control early maturation of the eukaryotic small ribosomal subunit. Hunziker, M., Barandun, J., Buzovetsky, O., Steckler, C., Molina, H., Klinge, S. Jan. 1, 2019
Visualizing late states of human 40S ribosomal subunit maturation. Ameismeier, M., Cheng, J., Berninghausen, O., Beckmann, R. Jan. 1, 2018
A distinct assembly pathway of the human 39S late pre-mitoribosome Cheng, J., Berninghausen, O., Beckmann, R. Jan. 1, 2021
Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination Riccardo Pecori , Salvatore Di Giorgio, J Paulo Lorenzo, F Nina Papavasiliou March 7, 2022
Taurine-containing uridine modifications in tRNA anticodons are required to decipher non-universal genetic codes in ascidian mitochondria Takeo Suzuki , Kenjyo Miyauchi , Tsutomu Suzuki , Shin-Ichi Yokobori, Naoki Shigi , Akiko Kondow , Nono Takeuchi , Akihiko Yamagishi, Kimitsuna Watanabe Oct. 14, 2011
Cloning of an Apobec-1-binding protein that also interacts with apolipoprotein B mRNA and evidence for its involvement in RNA editing P P Lau, H J Zhu, M Nakamuta, L Chan Jan. 17, 1997
The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase N Navaratnam , J R Morrison, S Bhattacharya, D Patel, T Funahashi, F Giannoni, B B Teng, N O Davidson, J Scott Oct. 5, 1993
The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas Giulia Saraconi, Francesco Severi, Cesare Sala, Giorgio Mattiuz, and Silvestro G Conticello None
Crystal structure of an H/ACA box ribonucleoprotein particle Li, L., Ye, K. Jan. 1, 2006
Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex Liang, B., Xue, S., Terns, R.M., Terns, M.P., Li, H. Jan. 1, 2007
Glycosidic bond conformation preference plays a pivotal role in catalysis of RNA pseudouridylation: a combined simulation and structural study. Zhou, J., Lv, C., Liang, B., Chen, M., Yang, W., Li, H. Jan. 1, 2010
Functional and Structural Impact of Target Uridine Substitutions on the H/ACA Ribonucleoprotein Particle Pseudouridine Synthase Zhou, J., Liang, B., Li, H. Jan. 1, 2010
Structural and functional evidence of high specificity of Cbf5 for ACA trinucleotide. Zhou, J., Liang, B., Li, H. Jan. 1, 2011
A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. C X Chen, D S Cho, Q Wang, F Lai, K C Carter, and K Nishikura May 1, 2000
Functions and Regulation of RNA Editing by ADAR Deaminases Kazuko Nishikura Jan. 1, 2010
Chapter 21 - Aberrant AID Expression by Pathogen Infection Atsushi Takai, Hiroyuki Marusawa, Tsutomu Chiba Jan. 1, 2015
Nucleolar maturation of the human small subunit processome. Singh, S., Vanden Broeck, A., Miller, L., Chaker-Margot, M., Klinge, S. Sept. 1, 2021
7-Methylguanosine diphosphate (m(7)GDP) is not hydrolyzed but strongly bound by decapping scavenger (dcpS) enzymes and potently inhibits their activity. Wypijewska A., Bojarska E., Lukaszewicz M., Stepinski J., Jemielity J., Davis R.E., Darzynkiewicz E. Oct. 9, 2012
KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Metzger, E., Wang, S., Urban, S., Willmann, D., Schmidt, A., Offermann, A., Allen, A., Sum, M., Obier, N., Cottard, F., Ulferts, S., Preca, B.T., Hermann, B., Maurer, J., Greschik, H., Hornung, V., Einsle, O., Perner, S., Imhof, A., Jung, M., Schule, R. None
Structural characterization of glycinamide-RNase-transformylase T fromMycobacterium tuberculosis. Chen, C., Liu, Z., Liu, L., Wang, J., Jin, Q. Jan. 1, 2020
Structural insight into human N6amt1-Trm112 complex functioning as a protein methyltransferase. Li, W., Shi, Y., Zhang, T., Ye, J., Ding, J. Jan. 1, 2019
THUMPD3-TRMT112 is a m2G methyltransferase working on a broad range of tRNA substrates. Yang W.Q., Xiong Q.P., Ge J.Y., Li H., Zhu W.Y., Nie Y., Lin X., Lv D., Li J., Lin H., Liu R.J. Jan. 1, 2021
Enzymatic characterization of three human RNA adenosine methyltransferases reveals diverse substrate affinities and reaction optima Dan Yu, Gundeep Kaur, Robert M Blumenthal, Xing Zhang, Xiaodong Cheng Jan. 1, 2021
The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation Caraline Sepich-Poore, Zhong Zheng, Emily Schmitt, Kailong Wen, Zijie Scott Zhang, Xiao-Long Cui, Qing Dai, Allen C Zhu, Linda Zhang, Arantxa Sanchez Castillo, Haiyan Tan, Junmin Peng , Xiaoxi Zhuang, Chuan He, Sigrid Nachtergaele March 1, 2022
Structural insights into the stimulation of S. pombe Dnmt2 catalytic efficiency by the tRNA nucleoside queuosine. Johannsson, S., Neumann, P., Wulf, A., Welp, L.M., Gerber, H.D., Krull, M., Diederichsen, U., Urlaub, H., Ficner, R None
Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA) Sara Müller, Indra M. Windhof, Vladimir Maximov, Tomasz Jurkowski, Albert Jeltsch, Konrad U. Förstner, Cynthia M. Sharma, Ralph Gräf, and Wolfgang Nellen Oct. 1, 2013
Structural insights into the catalytic mechanism of Escherichia coli selenophosphate synthetase. Noinaj, N., Wattanasak, R., Lee, D.Y., Wally, J.L., Piszczek, G., Chock, P.B., Stadtman, T.C., Buchanan, S.K. Jan. 1, 2010
Construction of the Central Protuberance and L1 Stalk during 60S Subunit Biogenesis. Kater, L., Mitterer, V., Thoms, M., Cheng, J., Berninghausen, O., Beckmann, R., Hurt, E. Jan. 1, 2020
Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors. Poll, G., Pilsl, M., Griesenbeck, J., Tschochner, H., Milkereit, P. Jan. 1, 2021
Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a novel binding interface for tRNA recognition. Hirata, A., Okada, K., Yoshii, K., Shiraishi, H., Saijo, S., Yonezawa, K., Shimizu, N., Hori, H. Jan. 1, 2019
Crystal structure of the two-subunit tRNA m(1)A58 methyltransferase TRM6-TRM61 from Saccharomyces cerevisiae. Wang, M., Zhu, Y., Wang, C., Fan, X., Jiang, X., Ebrahimi, M., Qiao, Z., Niu, L., Teng, M., Li, X. None
Structural insights into the function of 23S rRNA methyltransferase RlmG (m2G1835) from Escherichia coli Zhang, H., Gao, Z.Q., Wei, Y., Wang, W.J., Liu, G.F., Shtykova, E.V., Xu, J.H., Dong, Y.H. Jan. 1, 2012
Structural characterization of B. subtilis m1A22 tRNA methyltransferase TrmK: insights into tRNA recognition Degut, C., Roovers, M., Barraud, P., Brachet, F., Feller, A., Larue, V., Al Refaii, A., Caillet, J., Droogmans, L., Tisne, C. Jan. 1, 2019
Crystal structure of the ancient, Fe-S scaffold IscA reveals a novel protein fold. Bilder, P.W., Ding, H., Newcomer, M.E. Jan. 1, 2004
Conformational proofreading of distant 40S ribosomal subunit maturation events by a long-range communication mechanism. Mitterer, V., Shayan, R., Ferreira-Cerca, S., Murat, G., Enne, T., Rinaldi, D., Weigl, S., Omanic, H., Gleizes, P.E., Kressler, D., Plisson-Chastang, C., Pertschy, B. Jan. 1, 2019
rystal structure of the yeast heterodimeric ADAT2/3 deaminase. Liu, X., Chen, R., Sun, Y., Chen, R., Zhou, J., Tian, Q., Tao, X., Zhang, Z., Luo, G.Z., Xie, W. Jan. 1, 2020
Structural Insights into the Methylation of C1402 in 16S rRNA by Methyltransferase RsmI Zhao, M., Zhang, H., Liu, G., Wang, L., Wang, J., Gao, Z., Dong, Y., Zhang, L., Gong, Y. Jan. 1, 2016
Crystal Structure of Rlmm, the 2'O-Ribose Methyltransferase for C2498 of Escherichia Coli 23S Rrna Punekar, A.S., Shepherd, T.R., Liljeruhm, J., Forster, A.C., Selmer, M. Jan. 1, 2012
NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions. Harris, K.A., Bobay, B.G., Sarachan, K.L., Sims, A.F., Bilbille, Y., Deutsch, C., Iwata-Reuyl, D., Agris, P.F. Jan. 1, 2015
Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t6A biosynthesis Wan, L.C., Pillon, M.C., Thevakumaran, N., Sun, Y., Chakrabartty, A., Guarne, A., Kurinov, I., Durocher, D., Sicheri, F. Jan. 1, 2016
Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor Tek N Lamichhane , Sandy Mattijssen, Richard J Maraia None
Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Wan, L.C., Mao, D.Y., Neculai, D., Strecker, J., Chiovitti, D., Kurinov, I., Poda, G., Thevakumaran, N., Yuan, F., Szilard, R.K., Lissina, E., Nislow, C., Caudy, A.A., Durocher, D., Sicheri, F. Jan. 1, 2013
The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3' end of 16S rRNA. Tu, C., Zhou, X., Tarasov, S.G., Tropea, J.E., Austin, B.P., Waugh, D.S., Court, D.L., Ji, X. Jan. 1, 2011
Deciphering Determinants in Ribosomal Methyltransferases That Confer Antimicrobial Resistance Bhujbalrao, R., Anand, R. Jan. 1, 2019
Decoding the Mechanism of Specific RNA Targeting by Ribosomal Methyltransferases. Singh, J., Raina, R., Vinothkumar, K.R., Anand, R. Jan. 1, 2022
The ATP-mediated formation of the YgjD-YeaZ-YjeE complex is required for the biosynthesis of tRNA t6A in Escherichia coli Zhang, W., Collinet, B., Perrochia, L., Durand, D., van Tilbeurgh, H. None
Structure of a reaction intermediate mimic in t6A biosynthesis bound in the active site of the TsaBD heterodimer from Escherichia coli. Kopina, B.J., Missoury, S., Collinet, B., Fulton, M.G., Cirio, C., van Tilbeurgh, H., Lauhon, C.T. None
Expanding the Kinome World: A New Protein Kinase Family Widely Conserved in Bacteria Nguyen, H.A., El Khoury, T., Guiral, S., Laaberki, M.H., Candusso, M.P., Galisson, F., Foucher, A.E., Kesraoui, S., Ballut, L., Vallet, S., Orelle, C., Zucchini, L., Martin, J., Page, A., Attieh, J., Aghajari, N., Grangeasse, C., Jault, J.M. None
Protection of the Queuosine Biosynthesis Enzyme QueF from Irreversible Oxidation by a Conserved Intramolecular Disulfide Mohammad, A., Bon Ramos, A., Lee, B.W., Cohen, S.W., Kiani, M.K., Iwata-Reuyl, D., Stec, B., Swairjo, M.A. Jan. 1, 2017
The m1A58 modification in eubacterial tRNA: An overview of tRNA recognition and mechanism of catalysis by Trm Degut, C., Ponchon, L., Folly-Klan, M., Barraud, P., Tisne, C. Jan. 1, 2016
Structural insights into actin filament recognition by commonly used cellular actin markers Kumari, A., Kesarwani, S., Javoor, M.G., Vinothkumar, K.R., Sirajuddin, M. None
Structure of the Lifeact-F-actin complex Belyy, A., Merino, F., Sitsel, O., Raunser, S. None
Structural model of the M7G46 Methyltransferase TrmB in complex with tRNA Blersch, K.F., Burchert, J.P., August, S.C., Welp, L., Neumann, P., Koster, S., Urlaub, H., Ficner, R. Jan. 1, 2021
Crystal structure of the Tum1 protein from the yeast Saccharomyces cerevisiae. Qiu, R., Wang, F., Liu, M., Lou, T., Ji, C. Jan. 1, 2021
The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins Schmitz, J., Chowdhury, M.M., Hanzelmann, P., Nimtz, M., Lee, E.Y., Schindelin, H., Leimkuhler, S. Jan. 1, 2008
Structural basis of dcp2 recognition and activation by dcp1 She, M., Decker, C.J., Svergun, D.I., Round, A., Chen, N., Muhlrad, D., Parker, R., Song, H. Jan. 1, 2008
The Structural Basis of Edc3- and Scd6-Mediated Activation of the Dcp1:Dcp2 Mrna Decapping Complex Fromm, S.A., Truffault, V., Kamenz, J., Braun, J.E., Hoffmann, N.A., Izaurralde, E., Sprangers, R. None
Structure of the Dcp2-Dcp1 mRNA-decapping complex in the activated conformation. Valkov, E., Muthukumar, S., Chang, C.T., Jonas, S., Weichenrieder, O., Izaurralde, E. None
Structural basis of mRNA-cap recognition by Dcp1-Dcp2. Mugridge, J.S., Ziemniak, M., Jemielity, J., Gross, J.D. None
Changes in conformational equilibria regulate the activity of the Dcp2 decapping enzyme. Wurm, J.P., Holdermann, I., Overbeck, J.H., Mayer, P.H.O., Sprangers, R. None
DcpS as a therapeutic target for spinal muscular atrophy. Singh, J., Salcius, M., Liu, S.W., Staker, B.L., Mishra, R., Thurmond, J., Michaud, G., Mattoon, D.R., Printen, J., Christensen, J., Bjornsson, J.M., Pollok, B.A., Kiledjian, M., Stewart, L., Jarecki, J., Gurney, M.E. None
Structures and mechanisms of tRNA methylation by METTL1-WDR4. Ruiz-Arroyo, V.M., Raj, R., Babu, K., Onolbaatar, O., Roberts, P.H., Nam, Y. None
Structural basis of regulated m 7 G tRNA modification by METTL1-WDR4. Li, J., Wang, L., Hahn, Q., Nowak, R.P., Viennet, T., Orellana, E.A., Roy Burman, S.S., Yue, H., Hunkeler, M., Fontana, P., Wu, H., Arthanari, H., Fischer, E.S., Gregory, R.I. None
Epigenetic control of rDNA loci in response to intracellular energy status Murayama, A., Ohmori, K., Fujimura, A., Minami, H., Yasuzawa-Tanaka, K., Kuroda, T., Oie, S., Daitoku, H., Okuwaki, M., Nagata, K., Fukamizu, A., Kimura, K., Shimizu, T., Yanagisawa, J. None
Mechanisms of substrate recognition and N6-methyladenosine demethylation revealed by crystal structures of ALKBH5-RNA complexes. Kaur, S., Tam, N.Y., McDonough, M.A., Schofield, C.J., Aik, W.S. None
Crystal structure of the RNA demethylase ALKBH5 from zebrafish. Chen, W., Zhang, L., Zheng, G., Fu, Y., Ji, Q., Liu, F., Chen, H., He, C. None
Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. None
Switching Demethylation Activities between AlkB Family RNA/DNA Demethylases through Exchange of Active-Site Residues. Zhu, C., Yi, C. None
Structural basis of RNA processing by human mitochondrial RNase P Bhatta, A., Dienemann, C., Cramer, P., Hillen, H.S. None
A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor ofN6-methyladenosine demethylase FTO. Toh, J.D.W., Sun, L., Lau, L.Z.M., Tan, J., Low, J.J.A., Tang, C.W.Q., Cheong, E.J.Y., Tan, M.J.H., Chen, Y., Hong, W., Gao, Y.G., Woon, E.C.Y. None
Structural basis for inhibition of the fat mass and obesity associated protein (FTO) Aik, W.S., Demetriades, M., Hamdan, M.K.K., Bagg, E.A.L., Yeoh, K.K., Lejeune, C., Zhang, Z., McDonough, M.A., Schofield, C.J. None
Structure-Based Design of Selective Fat Mass and Obesity Associated Protein (FTO) Inhibitors Shishodia, S., Demetriades, M., Zhang, D., Tam, N.Y., Maheswaran, P., Clunie-O'Connor, C., Tumber, A., Leung, I.K.H., Ng, Y.M., Leissing, T.M., El-Sagheer, A.H., Salah, E., Brown, T., Aik, W.S., McDonough, M.A., Schofield, C.J. None
Fluorescein Derivatives as Bifunctional Molecules for the Simultaneous Inhibiting and Labeling of FTO Protein Wang, T., Hong, T., Huang, Y., Su, H., Wu, F., Chen, Y., Wei, L., Huang, W., Hua, X., Xia, Y., Xu, J., Gan, J., Yuan, B., Feng, Y., Zhang, X., Yang, C.G., Zhou, X. None
Structural insights into FTO's catalytic mechanism for the demethylation of multiple RNA substrates Zhang, X., Wei, L.H., Wang, Y., Xiao, Y., Liu, J., Zhang, W., Yan, N., Amu, G., Tang, X., Zhang, L., Jia, G. None
Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1 Peng, S., Xiao, W., Ju, D., Sun, B., Hou, N., Liu, Q., Wang, Y., Zhao, H., Gao, C., Zhang, S., Cao, R., Li, P., Huang, H., Ma, Y., Wang, Y., Lai, W., Ma, Z., Zhang, W., Huang, S., Wang, H., Zhang, Z., Zhao, L., Cai, T., Zhao, Y.L., Wang, F., Nie, Y., Zhi, G., Yang, Y.G., Zhang, E.E., Huang, N. None
Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Liu, Y., Liang, G., Xu, H., Dong, W., Dong, Z., Qiu, Z., Zhang, Z., Li, F., Huang, Y., Li, Y., Wu, J., Yin, S., Zhang, Y., Guo, P., Liu, J., Xi, J.J., Jiang, P., Han, D., Yang, C.G., Xu, M.M. None
Structure-Activity Relationships and Antileukemia Effects of the Tricyclic Benzoic Acid FTO Inhibitors Liu, Z., Duan, Z., Zhang, D., Xiao, P., Zhang, T., Xu, H., Wang, C.H., Rao, G.W., Gan, J., Huang, Y., Yang, C.G., Dong, Z. None
1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors. Dolbois, A., Bedi, R.K., Bochenkova, E., Muller, A., Moroz-Omori, E.V., Huang, D., Caflisch, A. None
Crystal structures of the bifunctional tRNA methyltransferase Trm5a Wang, C., Jia, Q., Chen, R., Wei, Y., Li, J., Ma, J., Xie, W. None
Structural insight into the methyltransfer mechanism of the bifunctional Trm5 Wang, C., Jia, Q., Zeng, J., Chen, R., Xie, W. None
The crystal structure of the Pyrococcus abyssi mono-functional methyltransferase PaTrm5b Wu, J., Jia, Q., Wu, S., Zeng, H., Sun, Y., Wang, C., Ge, R., Xie, W. None
Artificial intelligence-assisted cryoEM structure of Bfr2-Lcp5 complex observed in the yeast small subunit processome Zhao, Y., Rai, J., Xu, C., He, H., Li, H. None
Structural basis for late maturation steps of the human mitoribosomal large subunit. Cipullo, M., Gese, G.V., Khawaja, A., Hallberg, B.M., Rorbach, J. None
Stepwise maturation of the peptidyl transferase region of human mitoribosomes. Lenarcic, T., Jaskolowski, M., Leibundgut, M., Scaiola, A., Schonhut, T., Saurer, M., Lee, R.G., Rackham, O., Filipovska, A., Ban, N. None
Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Hillen, H.S., Lavdovskaia, E., Nadler, F., Hanitsch, E., Linden, A., Bohnsack, K.E., Urlaub, H., Richter-Dennerlein, R. None
Visualizing formation of the active site in the mitochondrial ribosome. Chandrasekaran, V., Desai, N., Burton, N.O., Yang, H., Price, J., Miska, E.A., Ramakrishnan, V. None
Structural and functional insights into human tRNA guanine transgylcosylase Sievers, K., Welp, L., Urlaub, H., Ficner, R. None
Crystal structure of human METTL6, the m3C methyltransferase Chen, R., Zhou, J., Liu, L., Mao, X.L., Zhou, X., Xie, W. None
Structural basis for METTL6-mediated m3C RNA methylation. Li, S., Zhou, H., Liao, S., Wang, X., Zhu, Z., Zhang, J., Xu, C. None
Cryo-EM structures of human m6A writer complexes. Su, S., Li, S., Deng, T., Gao, M., Yin, Y., Wu, B., Peng, C., Liu, J., Ma, J., Zhang, K. None
AI-empowered integrative structural characterization of m 6 A methyltransferase complex. Yan, X., Pei, K., Guan, Z., Liu, F., Yan, J., Jin, X., Wang, Q., Hou, M., Tang, C., Yin, P. None
Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. None
Fragment Ligands of the m 6 A-RNA Reader YTHDF2. Nai, F., Nachawati, R., Zalesak, F., Wang, X., Li, Y., Caflisch, A. None
Crystal structure of human YTHDC2 YTH domain. Ma, C., Liao, S., Zhu, Z. None
Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1 Baixing Wu 1, Shichen Su 1, Deepak P Patil 2, Hehua Liu 1 3, Jianhua Gan 3, Samie R Jaffrey 2, Jinbiao Ma 4 None
Structural Insight Into hnRNP A2/B1 Homodimerization and DNA Recognition. Liu, Y., Abula, A., Xiao, H., Guo, H., Li, T., Zheng, L., Chen, B., Nguyen, H.C., Ji, X. None
The Solution Structure and DNA-Binding Properties of the Cold-Shock Domain of the Human Y-Box Protein Yb-1. Kloks, C.P.A.M., Spronk, C.A.E.M., Lasonder, E., Hoffmann, A., Vuister, G.W., Grzesiek, S., Hilbers, C.W. None
Crystal structure of a Y-box binding protein 1 (YB-1)-RNA complex reveals key features and residues interacting with RNA. Yang, X.J., Zhu, H., Mu, S.R., Wei, W.J., Yuan, X., Wang, M., Liu, Y., Hui, J., Huang, Y. None
Structural basis of DNA binding to human YB-1 cold shock domain regulated by phosphorylation. Zhang, J., Fan, J.S., Li, S., Yang, Y., Sun, P., Zhu, Q., Wang, J., Jiang, B., Yang, D., Liu, M. None
Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Matthews, M.M., Thomas, J.M., Zheng, Y., Tran, K., Phelps, K.J., Scott, A.I., Havel, J., Fisher, A.J., Beal, P.A. None
A Bump-Hole Approach for Directed RNA Editing. Monteleone, L.R., Matthews, M.M., Palumbo, C.M., Thomas, J.M., Zheng, Y., Chiang, Y., Fisher, A.J., Beal, P.A. None
Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Thuy-Boun, A.S., Thomas, J.M., Grajo, H.L., Palumbo, C.M., Park, S., Nguyen, L.T., Fisher, A.J., Beal, P.A. None
Rational Design of RNA Editing Guide Strands: Cytidine Analogs at the Orphan Position. Doherty, E.E., Wilcox, X.E., van Sint Fiet, L., Kemmel, C., Turunen, J.J., Klein, B., Tantillo, D.J., Fisher, A.J., Beal, P.A. None
The ssDNA Mutator APOBEC3A Is Regulated by Cooperative Dimerization. Bohn, M.F., Shandilya, S.M., Silvas, T.V., Nalivaika, E.A., Kouno, T., Kelch, B.A., Ryder, S.P., Kurt-Yilmaz, N., Somasundaran, M., Schiffer, C.A. None
Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Kouno, T., Silvas, T.V., Hilbert, B.J., Shandilya, S.M.D., Bohn, M.F., Kelch, B.A., Royer, W.E., Somasundaran, M., Kurt Yilmaz, N., Matsuo, H., Schiffer, C.A. None
Two different kinds of interaction modes of deaminase APOBEC3A with single-stranded DNA in solution detected by nuclear magnetic resonance. Liu, Y., Lan, W., Wang, C., Cao, C. None
Structural Consequences of Nucleophosmin Mutations in Acute Myeloid Leukemia. Grummitt, C.G., Townsley, F.M., Johnson, C.M., Warren, A.J., Bycroft, M. None
Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Eichhorn, C.D., Yang, Y., Repeta, L., Feigon, J. None
Structural basis of RNA conformational switching in the transcriptional regulator 7SK RNP. Yang, Y., Liu, S., Egloff, S., Eichhorn, C.D., Hadjian, T., Zhen, J., Kiss, T., Zhou, Z.H., Feigon, J. None
Structural insight into the mechanism of stabilization of the 7SK small nuclear RNA by LARP7. Uchikawa, E., Natchiar, K.S., Han, X., Proux, F., Roblin, P., Zhang, E., Durand, A., Klaholz, B.P., Dock-Bregeon, A.C. None
Structure of human telomerase holoenzyme with bound telomeric DNA. Ghanim, G.E., Fountain, A.J., van Roon, A.M., Rangan, R., Das, R., Collins, K., Nguyen, T.H.D. None
Structure of active human telomerase with telomere shelterin protein TPP1. Liu, B., He, Y., Wang, Y., Song, H., Zhou, Z.H., Feigon, J. None
Zipper head mechanism of telomere synthesis by human telomerase. Wan, F., Ding, Y., Zhang, Y., Wu, Z., Li, S., Yang, L., Yan, X., Lan, P., Li, G., Wu, J., Lei, M. None
Small-molecule modulators of TRMT2A decrease PolyQ aggregation and PolyQ-induced cell death. Margreiter, M.A., Witzenberger, M., Wasser, Y., Davydova, E., Janowski, R., Metz, J., Habib, P., Sahnoun, S.E.M., Sobisch, C., Poma, B., Palomino-Hernandez, O., Wagner, M., Carell, T., Jon Shah, N., Schulz, J.B., Niessing, D., Voigt, A., Rossetti, G. None
Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Itoh, Y., Khawaja, A., Laptev, I., Cipullo, M., Atanassov, I., Sergiev, P., Rorbach, J., Amunts, A. None
Helicase of Type 2 Porcine Reproductive and Respiratory Syndrome Virus Strain HV Reveals a Unique Structure. Tang, C., Deng, Z., Li, X., Yang, M., Tian, Z., Chen, Z., Wang, G., Wu, W., Feng, W.H., Zhang, G., Chen, Z. None
Dodecamer Structure of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein nsp10 Su, D., Lou, Z., Sun, F., Zhai, Y., Yang, H., Zhang, R., Joachimiak, A., Zhang, X.C., Bartlam, M., Rao, Z. None
Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Sun, Y., Yang, Z., Tien, P., Ahola, T., Liang, Y., Liu, X., Guo, D. None
Crystal Structure and Functional Analysis of the Sars-Coronavirus RNA CAP 2'-O-Methyltransferase Nsp10/Nsp16 Complex. Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Gluais, L., Papageorgiou, N., Sharff, A., Bricogne, G., Ortiz-Lombardia, M., Lescar, J., Canard, B. None
Crystal Structure of Non-Structural Protein 10 from Severe Acute Respiratory Syndrome Coronavirus-2. Rogstam, A., Nyblom, M., Christensen, S., Sele, C., Talibov, V.O., Lindvall, T., Rasmussen, A.A., Andre, I., Fisher, Z., Knecht, W., Kozielski, F. None
Active Site of Lysyl-tRNA Synthetase: Structural Studies of the Adenylation Reaction Desogus, G., Todone, F., Brick, P., Onesti, S. None
The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli Onesti, S., Miller, A.D., Brick, P. None
Structural insights into dpCoA-RNA decapping by NudC. Zhou, W., Guan, Z., Zhao, F., Ye, Y., Yang, F., Yin, P., Zhang, D. None
Structural and catalytic analyses of the InsP 6 kinase activities of higher plant ITPKs. Zong, G., Shears, S.B., Wang, H. None
Cryo-EM structure of the EBV ribonucleotide reductase BORF2 and mechanism of APOBEC3B inhibition. Shaban, N.M., Yan, R., Shi, K., Moraes, S.N., Cheng, A.Z., Carpenter, M.A., McLellan, J.S., Yu, Z., Harris, R.S. None
Eukaryotic stand-alone pseudouridine synthases – RNA modifying enzymes and emerging regulators of gene expression? Anne C. Rintala-Dempsey and Ute Kothe None
Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription. Schubot, F.D., Chen, C.J., Rose, J.P., Dailey, T.A., Dailey, H.A., Wang, B.C. None
Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs Oruganti, S., Zhang, Y., Li, H. None
The 3.8 angstrom structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis Wan, R., Yan, C., Bai, R., Wang, L., Huang, M., Wong, C.C., Shi, Y. None
Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control Bizarro, J., Charron, C., Boulon, S., Westman, B., Pradet-Balade, B., Vandermoere, F., Chagot, M.E., Hallais, M., Ahmad, Y., Leonhardt, H., Lamond, A., Manival, X., Branlant, C., Charpentier, B., Verheggen, C., Bertrand, E. None
Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 angstrom resolution. Nguyen, T.H., Galej, W.P., Bai, X.C., Oubridge, C., Newman, A.J., Scheres, S.H., Nagai, K. None
Structure of a pre-catalytic spliceosome. Plaschka, C., Lin, P.C., Nagai, K. None
Architecture of the yeast small subunit processome. Chaker-Margot, M., Barandun, J., Hunziker, M., Klinge, S. None
The complete structure of the small-subunit processome. Barandun, J., Chaker-Margot, M., Hunziker, M., Molloy, K.R., Chait, B.T., Klinge, S. None
Molecular architecture of the 90S small subunit pre-ribosome. Sun, Q., Zhu, X., Qi, J., An, W., Lan, P., Tan, D., Chen, R., Wang, B., Zheng, S., Zhang, C., Chen, X., Zhang, W., Chen, J., Dong, M.Q., Ye, K. None
Structures of the fully assembledSaccharomyces cerevisiaespliceosome before activation Bai, R., Wan, R., Yan, C., Lei, J., Shi, Y. None
Biochemical and structural characterization of a thermostable Dps protein with His-type ferroxidase centers and outer metal-binding sites. Minato, T., Teramoto, T., Kakuta, Y., Ogo, S., Yoon, K.S. None
The Bacillus subtilis open reading frame ysgA encodes the SPOUT methyltransferase RlmP forming 2'- O-methylguanosine at position 2553 in the A-loop of 23S rRNA Martine Roovers , Geoffray Labar , Philippe Wolff , André Feller , Dany Van Elder , Romuald Soin , Cyril Gueydan , Véronique Kruys , Louis Droogmans None
Dissecting the roles of a strictly conserved tyrosine in substrate recognition and catalysis by pseudouridine 55 synthase Phannachet, K., Elias, Y., Huang, R.H. None
Conformational communication mediates the reset step in t6A biosynthesis. Luthra, A., Paranagama, N., Swinehart, W., Bayooz, S., Phan, P., Quach, V., Schiffer, J.M., Stec, B., Iwata-Reuyl, D., Swairjo, M.A. None
The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t6A tRNA-modification. Missoury, S., Plancqueel, S., Li de la Sierra-Gallay, I., Zhang, W., Liger, D., Durand, D., Dammak, R., Collinet, B., van Tilbeurgh, H. None
The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase Jan Philip Wurm 1, Britta Meyer, Ute Bahr, Martin Held, Olga Frolow, Peter Kötter, Joachim W Engels, Alexander Heckel, Michael Karas, Karl-Dieter Entian, Jens Wöhnert None
Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans Britta Meyer 1, Jan Philip Wurm 2, Sunny Sharma 3, Carina Immer 2, Denys Pogoryelov 4, Peter Kötter 1, Denis L J Lafontaine 3, Jens Wöhnert 5, Karl-Dieter Entian None
The 18S ribosomal RNA m6 A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. Jessica Leismann # 1, Mariangela Spagnuolo # 1, Mihika Pradhan 1, Ludivine Wacheul 2, Minh Anh Vu 1, Michael Musheev 1, Pablo Mier 3, Miguel A Andrade-Navarro 3, Marc Graille 4, Christof Niehrs 1 5, Denis Lj Lafontaine 2, Jean-Yves Roignant 1 None
Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively Sunny Sharma 1, Jun Yang, Peter Watzinger, Peter Kötter, Karl-Dieter Entian None
Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth Clemens Heissenberger 1, Lisa Liendl 1, Fabian Nagelreiter 1, Yulia Gonskikh 2, Guohuan Yang 3, Elena M Stelzer 1, Teresa L Krammer 1, Lucia Micutkova 4, Stefan Vogt 1, David P Kreil 1, Gerhard Sekot 1, Emilio Siena 1, Ina Poser 5, Eva Harreither 1, Angela Linder 1, Viktoria Ehret 6, Thomas H Helbich 6, Regina Grillari-Voglauer 1, Pidder Jansen-Dürr 4, Martin Koš 3, Norbert Polacek 2, Johannes Grillari 1 7 8, Markus Schosserer None
Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program Maxime Janin 1, Vanessa Ortiz-Barahona 1, Manuel Castro de Moura 1, Anna Martínez-Cardús 1, Pere Llinàs-Arias 1, Marta Soler 1, Daphna Nachmani 2, Joffrey Pelletier 3, Ulrike Schumann 4, Maria E Calleja-Cervantes 1, Sebastian Moran 1, Sonia Guil 1, Alberto Bueno-Costa 1, David Piñeyro 1, Montserrat Perez-Salvia 1, Margalida Rosselló-Tortella 1, Laia Piqué 1, Joan J Bech-Serra 5, Carolina De La Torre 5, August Vidal 6 7, María Martínez-Iniesta 8, Juan F Martín-Tejera 8, Alberto Villanueva 8, Alexandra Arias 9, Isabel Cuartas 9, Ana M Aransay 10, Andres Morales La Madrid 11 12, Angel M Carcaboso 13, Vicente Santa-Maria 11 12, Jaume Mora 11, Agustin F Fernandez 14, Mario F Fraga 15, Iban Aldecoa 16, Leire Pedrosa 17, Francesc Graus 18, Noemi Vidal 6, Fina Martínez-Soler 19, Avelina Tortosa 19, Cristina Carrato 20, Carme Balañá 21, Matthew W Boudreau 22, Paul J Hergenrother 22, Peter Kötter 23, Karl-Dieter Entian 23, Jürgen Hench 24, Stephan Frank 24, Sheila Mansouri 25, Gelareh Zadeh 25, Pablo D Dans 26, Modesto Orozco 26 27, George Thomas 3 28 29, Sandra Blanco 30 31, Joan Seoane 7 9 32, Thomas Preiss 4 33, Pier Paolo Pandolfi 2, Manel Esteller None
The ribosomal RNA m5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans 33289480 None
Translational adaptation to heat stress is mediated by RNA 5-methylcytosine in Caenorhabditis elegans None
An RNA modification enzyme directly senses reactive oxygen species for translational regulation in Enterococcus faecalis Wei Lin Lee 1, Ameya Sinha 1 2 3, Ling Ning Lam 2 4 5, Hooi Linn Loo 1, Jiaqi Liang 1 6, Peiying Ho 1, Liang Cui 1, Cheryl Siew Choo Chan 1 7, Thomas Begley 8, Kimberly Ann Kline 1 2 4 9, Peter Dedon None
Expanded tRNA methyltransferase family member TRMT9B regulates synaptic growth and function Caley A Hogan # 1, Scott J Gratz # 2, Jennifer L Dumouchel # 3, Rajan S Thakur 2, Ambar Delgado 2, Jenna M Lentini 4, Kimberly R Madhwani 5, Dragony Fu 4, Kate M O'Connor-Giles None
Biochemical characterization of mRNA capping enzyme from Faustovirus S Hong Chan 1, Christa N Molé 2, Dillon Nye 2, Lili Mitchell 2, Nan Dai 2, Jackson Buss 2, Daniel W Kneller 2, Joseph M Whipple 2, G Brett Robb None
Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease Da Oliviera, A., Dai, X., Mottaghinia, S., Geissler, E.P., Etienne, L., Zhang, Y., Mugridge, J.S. None
TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival Joshua M Dewe 1, Benjamin L Fuller 1, Jenna M Lentini 1, Stefanie M Kellner 2, Dragony Fu None
Human TRMT1 catalyzes m2G or m22G formation on tRNAs in a substrate-dependent manner Qing-Ping Xiong 1, Jing Li 2, Hao Li 2, Zhi-Xuan Huang 1 2, Han Dong 1, En-Duo Wang 3 4, Ru-Juan Liu None
Complete chemical structures of human mitochondrial tRNAs Takeo Suzuki 1 , Yuka Yashiro 1 , Ittoku Kikuchi 1 , Yuma Ishigami 1 , Hironori Saito 2 3 , Ikuya Matsuzawa 1 , Shunpei Okada 1 4 , Mari Mito 2 , Shintaro Iwasaki 2 3 , Ding Ma 1 , Xuewei Zhao 1 , Kana Asano 1 , Huan Lin 1 5 , Yohei Kirino 6 , Yuriko Sakaguchi 1 , Tsutomu Suzuki None
NSUN3-mediated mitochondrial tRNA 5-formylcytidine modification is essential for embryonic development and respiratory complexes in mice Yoshitaka Murakami 1 2, Fan-Yan Wei 3, Yoshimi Kawamura 4, Haruki Horiguchi 5, Tsuyoshi Kadomatsu 5, Keishi Miyata 5, Kyoko Miura 4 6, Yuichi Oike 5 6, Yukio Ando 7, Mitsuharu Ueda 2 6, Kazuhito Tomizawa 8 9, Takeshi Chujo None
Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification. Cho, G., Lee, J., Kim, J. None
Crystal structure and cap binding analysis of the methyltransferase of langat virus Ruixue Li 1, Ziping Niu 2, Yujie Liu 2, Xue Bai 2, Deping Wang 3, Chen Chen None
Structure and function of the NS5 methyltransferase domain from Usutu virus Diego S Ferrero 1, Laura Albentosa-González 2, Antonio Mas 3, Nuria Verdaguer None
A second type of N7-guanine RNA cap methyltransferase in an unusual locus of a large RNA virus genome. Shannon, A., Sama, B., Gauffre, P., Guez, T., Debart, F., Vasseur, J.J., Decroly, E., Canard, B., Ferron, F. None
A dual role of human tRNA methyltransferase hTrmt13 in regulating translation and transcription Hao Li, 1 , 2 , † Han Dong, 2 , † Beisi Xu, 3 , † Qing‐Ping Xiong, 2 Cai‐Tao Li, 1 , 2 Wen‐Qing Yang, 1 Jing Li, 1 Zhi‐Xuan Huang, 1 , 2 Qi‐Yu Zeng, 2 En‐Duo Wang,corresponding author 1 , 2 and Ru‐Juan Liucorresponding author 1 None
FIONA1 is an RNA N6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering Chunling Wang # 1, Junbo Yang # 1, Peizhe Song 1, Wei Zhang 1, Qiang Lu 1, Qiong Yu 1, Guifang Jia None
Arabidopsis N6-methyladenosine methyltransferase FIONA1 regulates floral transition by affecting the splicing of FLC and the stability of floral activators SPL3 and SEP3 Jing Cai 1, Jianzhong Hu 1, Umme Amara 1, Su Jung Park 1, Yuxia Li 2, Daesong Jeong 3, Ilha Lee 3, Tao Xu 2, Hunseung Kang None
FIONA1-Mediated m6 A Modification Regulates the Floral Transition in Arabidopsis Tao Xu 1 2, Xiaowei Wu 1 2, Chui Eng Wong 1 2, Sheng Fan 2, Yu Zhang 1 2, Songyao Zhang 1, Zhe Liang 1 3, Hao Yu 1 2, Lisha Shen 2 None
m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site Matthew T Parker 1, Beth K Soanes 2, Jelena Kusakina 2, Antoine Larrieu 2, Katarzyna Knop 1, Nisha Joy 1, Friedrich Breidenbach 1 3, Anna V Sherwood 1, Geoffrey J Barton 1, Sebastian M Fica 4, Brendan H Davies 2, Gordon G Simpson 1 5 None
The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication Laurent Vespa 1, Gilles Vachon, Frédéric Berger, Daniel Perazza, Jean-Denis Faure, Michel He None
Identification of factors required for m6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI None
RNA methyltransferases in plants: Breakthroughs in function and evolution Ricardo Ferraz 1, Sílvia Coimbra 2, Sandra Correia 3, Jorge Canhoto 4 None
Identification of factors required for m6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI Kamil Růžička 1 2, Mi Zhang 3, Ana Campilho 2 4, Zsuzsanna Bodi 3, Muhammad Kashif 2, Mária Saleh 1, Dominique Eeckhout 5 6, Sedeer El-Showk 2, Hongying Li 3 7, Silin Zhong 3 8, Geert De Jaeger 5 6, Nigel P Mongan 9, Jan Hejátko 1, Ykä Helariutta 2 10, Rupert G Fray None